Bangham CRM, Human T. Cell leukemia virus type 1: persistence and pathogenesis. Ann Rev Immunol. 2018;36(1):43–71.
Article
CAS
Google Scholar
Gessain A, Gessain A, Cassar O. Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol. 2012;3(388). https://doi.org/10.3389/fmicb.2012.00388.
Kataoka K, Koya J. Clinical application of genomic aberrations in adult T-cell leukemia/lymphoma. J Clin Exp Hematop. 2020;60(3):66–72.
Article
PubMed
PubMed Central
Google Scholar
Taylor GP, Matsuoka M. Natural history of adult T-cell leukemia/lymphoma and approaches to therapy. Oncogene. 2005;24(39):6047–57.
Article
CAS
PubMed
Google Scholar
Yasunaga JI. Strategies of human T-cell leukemia virus type 1 for persistent infection: implications for leukemogenesis of adult T-cell leukemia-lymphoma. Front Microbiol. 2020;11:979.
Article
PubMed
PubMed Central
Google Scholar
Durer C, Babiker HM. Adult T cell leukemia. Treasure Island, FL: StatPearls Publishing Copyright © 2020. StatPearls Publishing LLC.; 2020.
Google Scholar
Chan CP, Kok KH, Jin DY. Human T-cell leukemia virus type 1 infection and adult T-cell leukemia. Adv Exp Med Biol. 2017;1018:147–66.
Article
CAS
PubMed
Google Scholar
Giam CZ. HTLV-1 replication and adult T cell leukemia development. Recent Results Cancer Res. 2021;217:209–43.
Article
PubMed
Google Scholar
Matsuoka M, Yasunaga J-I. Human T-cell leukemia virus type 1: replication, proliferation and propagation by Tax and HTLV-1 bZIP factor. Curr Opin Virol. 2013;3(6):684–91.
Article
CAS
PubMed
Google Scholar
Satou Y, Yasunaga J-I, Zhao T, Yoshida M, Miyazato P, Takai K, et al. HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo. PLOS Pathog. 2011;7(2):e1001274.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohsugi T, Kumasaka T, Okada S, Urano T. The tax protein of HTLV-1 promotes oncogenesis in not only immature T cells but also mature T cells. Nat Med. 2007;13(5):527–8.
Article
CAS
PubMed
Google Scholar
Aghajanian S, Teymoori-Rad M, Molaverdi G, Mozhgani S-H. Immunopathogenesis and cellular interactions in human T-cell leukemia virus type 1 associated myelopathy/tropical spastic paraparesis. Front Microbiol. 2020;11:614940.
Article
PubMed
PubMed Central
Google Scholar
Grassmann R, Aboud M, Jeang K-T. Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene. 2005;24(39):5976–85.
Article
CAS
PubMed
Google Scholar
Fochi S, Ciminale V, Trabetti E, Bertazzoni U, D’Agostino DM, Zipeto D, et al. NF-κB and microRNA deregulation mediated by HTLV-1 tax and HBZ. Pathogens. 2019;8(4):290.
Article
CAS
PubMed Central
Google Scholar
Giam C-Z, Semmes OJ. HTLV-1 infection and adult T-cell leukemia/lymphoma—A tale of two proteins: tax and HBZ. Viruses. 2016;8(6):161.
Article
PubMed Central
CAS
Google Scholar
Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga J-I, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genetics. 2015;47(11):1304–15.
Article
CAS
PubMed
Google Scholar
Takeda S, Maeda M, Morikawa S, Taniguchi Y, Yasunaga J-I, Nosaka K, et al. Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int J Cancer. 2004;109(4):559–67.
Article
CAS
PubMed
Google Scholar
Gillet NA, Malani N, Melamed A, Gormley N, Carter R, Bentley D, et al. The host genomic environment of the provirus determines the abundance of HTLV-1–infected T-cell clones. Blood. 2011;117(11):3113–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moles R, Nicot C. The emerging role of miRNAs in HTLV-1 infection and ATLL pathogenesis. Viruses. 2015;7(7):4047–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sampey G, Van Duyne R, Currer R, Das R, Narayanan A, Kashanchi F. Complex role of microRNAs in HTLV-1 infections. Front Genetics. 2012;3:295.
Article
CAS
Google Scholar
Ruggero K, Corradin A, Zanovello P, Amadori A, Bronte V, Ciminale V, et al. Role of microRNAs in HTLV-1 infection and transformation. Mol Aspects Med. 2010;31(5):367–82.
Article
CAS
PubMed
Google Scholar
Yamagishi M, Fujikawa D, Watanabe T, Uchimaru K. HTLV-1-mediated epigenetic pathway to adult T-cell leukemia-lymphoma. Front Microbiol. 2018;9:1686.
Article
PubMed
PubMed Central
Google Scholar
Gazon H, Belrose G, Terol M, Meniane J-C, Mesnard J-M, Césaire R, et al. Impaired expression of DICER and some microRNAs in HBZ expressing cells from acute adult T-cell leukemia patients. Oncotarget. 2016;7(21):30258–75.
Article
PubMed
PubMed Central
Google Scholar
Kitagawa N, Ojima H, Shirakihara T, Shimizu H, Kokubu A, Urushidate T, et al. Downregulation of the microRNA biogenesis components and its association with poor prognosis in hepatocellular carcinoma. Cancer Sci. 2013;104(5):543–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwon SY, Lee JH, Kim B, Park JW, Kwon TK, Kang SH, et al. Complexity in regulation of microRNA machinery components in invasive breast carcinoma. Pathol Oncol Res. 2014;20(3):697–705.
Article
CAS
PubMed
Google Scholar
Pichler K, Schneider G, Grassmann R. MicroRNA miR-146a and further oncogenesis-related cellular microRNAs are dysregulated in HTLV-1-transformed T lymphocytes. Retrovirology. 2008;5(1):100.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen Y. Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucl Acids Res. 2020;48(D1):D127–D31.
Article
CAS
PubMed
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14(1):128.
Article
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucl Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mozhgani S-H, Jahantigh HR, Rafatpanah H, Valizadeh N, Mohammadi A, Basharkhah S, et al. Interferon lambda family along with HTLV-1 proviral load, tax, and HBZ implicated in the pathogenesis of myelopathy/tropical spastic paraparesis. Neurodegenerative Diseases. 2018;18:150–5.
Article
CAS
PubMed
Google Scholar
Mozhgani S-H, Piran M, Zarei-Ghobadi M, Jafari M, Jazayeri S-M, Mokhtari-Azad T, et al. An insight to HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) pathogenesis; evidence from high-throughput data integration and meta-analysis. Retrovirology. 2019;16(1):46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruggero K, Guffanti A, Corradin A, Sharma VK, De Bellis G, Corti G, et al. Small noncoding RNAs in cells transformed by human T-cell leukemia virus type 1: a role for a tRNA fragment as a primer for reverse transcriptase. J Virol. 2014;88(7):3612–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yamagishi M, Nakano K, Miyake A, Yamochi T, Kagami Y, Tsutsumi A, et al. Polycomb-mediated loss of miR-31 activates NIK-dependent NF-κB pathway in adult T cell leukemia and other cancers. Cancer Cell. 2012;21(1):121–35.
Article
CAS
PubMed
Google Scholar
Yeung ML, Yasunaga J, Bennasser Y, Dusetti N, Harris D, Ahmad N, et al. Roles for microRNAs, miR-93 and miR-130b, and tumor protein 53-induced nuclear protein 1 tumor suppressor in cell growth dysregulation by human T-cell lymphotrophic virus 1. Cancer Res. 2008;68(21):8976–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bellon M, Lepelletier Y, Hermine O, Nicot C. Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia. Blood. 2009;113(20):4914–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramasamy A, Mondry A, Holmes CC, Altman DG. Key issues in conducting a meta-analysis of gene expression microarray datasets. PLOS Medicine. 2008;5(9):e184.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu Y, Yin B, Zhang C, Zhou L, Fan J. Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc. Biochem Biophys Res Commun. 2012;417(1):371–5.
Article
CAS
PubMed
Google Scholar
Nakajima GO, Hayashi K, Xi Y, Kudo K, Uchida K, Takasaki KEN, et al. Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics—Proteomics. 2006;3(5):317.
CAS
PubMed
Google Scholar
Lan F-F, Wang H, Chen Y-C, Chan C-Y, Ng SS, Li K, et al. Hsa-let-7g inhibits proliferation of hepatocellular carcinoma cells by downregulation of c-Myc and upregulation of p16INK4A. Int J Cancer. 2011;128(2):319–31.
Article
CAS
PubMed
Google Scholar
Miller DM, Thomas SD, Islam A, Muench D. Sedoris K. c-Myc and cancer metabolism. Clin Cancer Res. 2012;18(20):5546–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Liang Y, Lv H, Meng H, Xiong G, Guan X, et al. miR-26a and miR-26b inhibit esophageal squamous cancer cell proliferation through suppression of c-MYC pathway. Gene. 2017;625:1–9.
Article
CAS
PubMed
Google Scholar
Liang S, He L, Zhao X, Miao Y, Gu Y, Guo C, et al. MicroRNA let-7f inhibits tumor invasion and metastasis by targeting MYH9 in human gastric cancer. PLOS ONE. 2011;6(4):e18409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobson JR, Taipaleenmäki H, Hu Y-J, Hong D, van Wijnen AJ, Stein JL, et al. hsa-mir-30c promotes the invasive phenotype of metastatic breast cancer cells by targeting NOV/CCN3. Cancer Cell Int. 2014;14(1):73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Agirre X, Jiménez-Velasco A, San José-Enériz E, Garate L, Bandrés E, Cordeu L, et al. Down-regulation of <em>hsa-miR-10a</em> in chronic myeloid leukemia CD34<sup>+</sup> Cells increases USF2-mediated cell growth. Mol Cancer Res. 2008;6(12):1830.
Article
CAS
PubMed
Google Scholar
Veerla S, Lindgren D, Kvist A, Frigyesi A, Staaf J, Persson H, et al. MiRNA expression in urothelial carcinomas: Important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer. 2009;124(9):2236–42.
Article
CAS
PubMed
Google Scholar
Hudson J, Duncavage E, Tamburrino A, Salerno P, Xi L, Raffeld M, et al. Overexpression of miR-10a and miR-375 and downregulation of YAP1 in medullary thyroid carcinoma. Exp Mol Pathol. 2013;95(1):62–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang R, Bao H, Zhang S, Li R, Chen L, Zhu Y. miR-186-5p promotes apoptosis by targeting IGF-1 in SH-SY5Y OGD/R model. Int J Biol Sci. 2018;14(13):1791–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nascimento A, Valadão de Souza DR, Pessôa R, Pietrobon AJ, Nukui Y, Pereira J, et al. Global expression of noncoding RNome reveals dysregulation of small RNAs in patients with HTLV-1–associated adult T-cell leukemia: a pilot study. Infectious Agents Cancer. 2021;16(1):4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verzella D, Pescatore A, Capece D, Vecchiotti D, Ursini MV, Franzoso G, et al. Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Disease. 2020;11(3):210.
Article
PubMed
PubMed Central
Google Scholar
Tang G, Minemoto Y, Dibling B, Purcell NH, Li Z, Karin M, et al. Inhibition of JNK activation through NF-κB target genes. Nature. 2001;414(6861):313–7.
Article
CAS
PubMed
Google Scholar
Bang Y-J, Kwon JH, Kang SH, Kim JW, Yang YC. Increased MAPK activity and MKP-1 overexpression in human gastric adenocarcinoma. Biochem Biophys Res Commun. 1998;250(1):43–7.
Article
CAS
PubMed
Google Scholar
Wang J, Zhou J-Y, Wu GS. ERK-dependent MKP-1–mediated cisplatin resistance in human ovarian cancer cells. Cancer Res. 2007;67(24):11933–41.
Article
CAS
PubMed
Google Scholar
Munkley J, Lafferty NP, Kalna G, Robson CN, Leung HY, Rajan P, et al. Androgen-regulation of the protein tyrosine phosphatase PTPRR activates ERK1/2 signalling in prostate cancer cells. BMC Cancer. 2015;15(1):1–11.
Article
CAS
Google Scholar
Su P, Lin Y, Huang R, Liao Y, Lee H, Wang H, et al. Epigenetic silencing of PTPRR activates MAPK signaling, promotes metastasis and serves as a biomarker of invasive cervical cancer. Oncogene. 2013;32(1):15–26.
Article
CAS
PubMed
Google Scholar
Nucifora G, Laricchia-Robbio L, Senyuk V. EVI1 and hematopoietic disorders: history and perspectives. Gene. 2006;368:1–11.
Article
CAS
PubMed
Google Scholar
Nanjundan M, Nakayama Y, Cheng KW, Lahad J, Liu J, Lu K, et al. Amplification of MDS1/EVI1 and EVI1, located in the 3q26.2 amplicon, is associated with favorable patient prognosis in ovarian cancer. Cancer Res. 2007;67(7):3074.
Article
CAS
PubMed
Google Scholar
Boxus M, Twizere J-C, Legros S, Dewulf J-F, Kettmann R, Willems L. The HTLV-1 tax interactome. Retrovirology. 2008;5(1):76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu X, Heidenreich O, Kitajima I, McGuire K, Li Q, Su B, et al. Constitutively activated JNK is associated with HTLV-1 mediated tumorigenesis. Oncogene. 1996;13(1):135–42.
CAS
PubMed
Google Scholar
Yin MJ, Christerson LB, Yamamoto Y, Kwak YT, Xu S, Mercurio F, et al. HTLV-I Tax protein binds to MEKK1 to stimulate IkappaB kinase activity and NF-kappaB activation. Cell. 1998;93(5):875–84.
Article
CAS
PubMed
Google Scholar
De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, et al. Induction of gadd45β by NF-κB downregulates pro-apoptotic JNK signalling. Nature. 2001;414(6861):308–13.
Article
PubMed
Google Scholar
Papa S, Bubici C, Zazzeroni F, Pham CG, Kuntzen C, Knabb JR, et al. The NF-κB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differen. 2006;13(5):712–29.
Article
CAS
Google Scholar
Nakachi S, Nakazato T, Ishikawa C, Kimura R, Mann DA, Senba M, et al. Human T-cell leukemia virus type 1 Tax transactivates the matrix metalloproteinase 7 gene via JunD/AP-1 signaling. Biochim Biophys Acta Mol Cell Res. 2011;1813(5):731–41.
Article
CAS
Google Scholar
Wagner EF, Nebreda ÁR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9(8):537–49.
Article
CAS
PubMed
Google Scholar