Waldmann TA: Immunotherapy: past, present and future. Nat Med. 2003, 9: 269-277.
Article
PubMed
CAS
Google Scholar
Steinman RM, Mellman I: Immunotherapy: bewitched, bothered, and bewildered no more. Science. 2004, 305: 197-200.
Article
PubMed
CAS
Google Scholar
Curiel TJ: Tregs and rethinking cancer immunotherapy. J Clin Invest. 2007, 117: 1167-1174.
Article
PubMed
CAS
PubMed Central
Google Scholar
Murray PJ, Aldovini A, Young RA: Manipulation and potentiation of antimycobacterial immunity using recombinant bacille Calmette-Guérin strains that secrete cytokines. Proc Natl Acad Sci USA. 1996, 93: 934-939.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cook DN, Pisetsky DS, Schwartz DA: Toll-like receptors in the pathogenesis of human disease. Nat Immunol. 2004, 5: 975-995.
Article
PubMed
CAS
Google Scholar
Killeen SD, Wang JH, Andrews EJ, Redmond HP: Exploitation of the Toll-like receptor system in cancer: a doubled-edged sword?. Br J Cancer. 2006, 95: 247-252.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gearing AJ: Targeting toll-like receptors for drug development: a summary of commercial approaches. Immunol Cell Biol. 2007, 85: 490-494.
Article
PubMed
CAS
Google Scholar
Erard F, Ryffel B: Toll like receptor - potential drug targets in infectious disease. Infect Disord Drug Targets. 2008, 8: 221-231.
Article
PubMed
CAS
Google Scholar
Hennessy EJ, Parker AE, O’Neill LAJ: Targeting Toll-like receptors: emerging therapeutics?. Nat Rev Drug Discov. 2010, 9: 293-307.
Article
PubMed
CAS
Google Scholar
Akira S, Uematsu S, Takeuchi O: Pathogen recognition and innate immunity. Cell. 2006, 124: 783-801.
PubMed
CAS
Google Scholar
Srikrishna G, Freeze HH: Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia. 2009, 11: 615-628.
Article
PubMed
CAS
PubMed Central
Google Scholar
Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH, Mayer L, Unkeless JC, Xiong H: Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res. 2005, 65: 5009-5014.
Article
PubMed
CAS
Google Scholar
Kelly MG, Alvero AB, Chen R, Silasi DA, Abrahams VM, Chan S, Visintin I, Rutherford T, Mor G: TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res. 2006, 66: 3859-3868.
Article
PubMed
CAS
Google Scholar
Paone A, Starace D, Galli R, Padula F, De Cesaris P, Filippini A, Ziparo E, Riccioli A: Toll-like receptor 3 triggers apoptosis of human prostate cancer cells through a PKC-α–dependent mechanism. Carcinogenesis. 2008, 29: 1334-1342.
Article
PubMed
CAS
Google Scholar
Simons MP, O'Donnell MA, Griffith TS: Role of neutrophils in BCG immunotherapy for bladder cancer. Urol Oncol. 2008, 26: 341-345.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kowalski M, Entwistle J, Cizeau J, Niforos D, Loewen S, Chapman W, MacDonald GC: A Phase I study of an intravesically administered immunotoxin targeting EpCAM for the treatment of nonmuscle-invasive bladder cancer in BCGrefractory and BCG-intolerant patients. Drug Des Devel Ther. 2010, 4: 313-320.
PubMed
CAS
PubMed Central
Google Scholar
Shelley MD, Court JB, Kynaston H, Wilt TJ, Fish RG, Mason M: Intravesical bacillus Calmette-Guerin in Ta and T1 bladder cancer. 2000, 4-
Google Scholar
Zlotta AR, Van Vooren JP, Denis O, Drowart A, Daffé M, Lefèvre P, Schandene L, De Cock M, De Bruyn J, Vandenbussche P, Jurion F, Palfliet K, Simon J, Schulman CC, Content J, Huygen K: What are the immunologically active components of bacille Calmette-Guerin in therapy of superficial bladder cancer?. Int J Cancer. 2000, 87: 844-852.
Article
PubMed
CAS
Google Scholar
Perabo FG, Willert PL, Wirger A, Schmidt DH, Von Rueker A, Mueller SC: Superantigen-activated mononuclear cells induce apoptosis in transitional cell carcinoma. Anticancer Res. 2005, 25: 3565-3573.
PubMed
CAS
Google Scholar
Heldwein KA, Liang MD, Andresen TK, Thomas KE, Marty AM, Cuesta N, Vogel SN, Fenton MJ: TLR2 and TLR4 serve distinct roles in the host immune response against Mycobacterium bovis BCG. J Leukoc Biol. 2003, 74: 277-2786.
Article
PubMed
CAS
Google Scholar
Tsuji S, Matsumoto M, Takeuchi O, Akira S, Azuma I, Hayashi A, Toyoshima K, Seya T: Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect Immun. 2000, 68: 6883-6890.
Article
PubMed
CAS
PubMed Central
Google Scholar
Uehori J, Matsumoto M, Tsuji S, Akazawa T, Takeuchi O, Akira S, Kawata T, Azuma I, Toyoshima K, Seya T: Simultaneous blocking of human Toll-like receptors 2 and 4 suppresses myeloid dendritic cell activation induced by Mycobacterium bovis bacillus Calmette-Guérin peptidoglycan. Infect Immun. 2003, 71: 4238-4249.
Article
PubMed
CAS
PubMed Central
Google Scholar
Oosterlinck W, Lobel B, Jackse G, Malmström PU, Stöckle M, Strenberg C: European Association of Urology Recommendations 2001 “Guidelines on bladder cancer”. Prog Urol. 2002, 12: 1161-1163.
PubMed
CAS
Google Scholar
Tolley DA, Parmar MK, Grigor KM, Lallemand G, Benyon LL, Fellows J, Freedman LS, Grigor KM, Hall RR, Hargreave TB, Munson K, Newling DW, Richards B, Robinson MR, Rose MB, Smith PH, Williams JL, Whelan P: The effect of intravesical mitomycin C on recurrence of newly diagnosed superficial bladder cancer: a further report with 7 years of follow up. J Urol. 1996, 155: 1233-1238.
Article
PubMed
CAS
Google Scholar
Durán N, Gowen BB, Costa FT, Justo GZ, Brocchi M, Nunes OS, Nunes IS: A biotechnological product and its potential as a new immunomodulator for treatment of animal phlebovirus infection: Punta Toro virus. Antiviral Res. 2009, 83: 143-147.
Article
PubMed
Google Scholar
Reis LO, Fávaro WJ, Ferreira U, Billis A, Fazuoli MG, Cagnon VH: Evolution on experimental animal model for upper urothelium carcinogenesis. World J Urol. 2010, 28: 499-505.
Article
PubMed
CAS
Google Scholar
Reis LO, Ferreira U, Billis A, Castello AZ, Nunes IS, Durán N, Cagnon VH, Fávaro WJ: Putative Cancer Stem Cells (CSCS) signaling after immunotherapy with Bacillus Calmette-Guerin (BCG) and P-MAPA in the Superficial Bladder Cancer (SBC) [abstract]. J Urol. 2011, 185: e200-e201.
Article
Google Scholar
Nunes I: Building a new model for pharmaceuticals—P-MAPA, a novel immunomodulator against virus, bacterial, and protozoan infections. 2008, Abstract I-8. International Centre for Science and High Technology (ICS), United Nations Industrial Development Organization (UNIDO), United Nations Industrial Development Organization, Accessed at [www.ics.trieste.it/portal/ActivityDocument.aspx?id=5711]
Google Scholar
Farmabrasilis: P-MAPA immunomodulator. Available at[http://www.farmabrasilis.org.br/todos_conteudos_interna.php?idioma=eng&id=110]
Bromberg N, Justo GJ, Seabra AB, Durán N: Macrophage nitric oxide (NO) stimulation by an immunomodulator: P-MAPA. Nitric Oxide-Biol Chem. 2006, 14: A37-
Article
Google Scholar
Farmabrasilis: The Farmabrasilis infectious diseases proposal -3rd Stop TB Partners Forum -Rio 2009. 2009,http://www.farmabrasilis.org.br/pesquisa_desenvolvimento_interna.php?idioma=eng&id=255,
Google Scholar
Michelsen KS, Aicher A, Mohaupt M, Hartung T, Dimmeler S, Kirschning CJ, Schumann RR: The role of toll-like receptors (TLRs) in bacteria-induced maturation of murine dendritic cells (DCS). Peptidoglycan and lipoteichoic acid are inducers of DC maturation and require TLR2. J Biol Chem. 2001, 276: 25680-25686.
Article
PubMed
CAS
Google Scholar
Thoma-Uszynski S, Kiertscher SM, Ochoa MT, Bouis DA, Norgard MV, Miyake K, Godowski PJ, Roth MD, Modlin RL: Activation of toll-like receptor 2 on human dendritic cells triggers induction of IL-12, but not IL-10. J Immunol. 2000, 165: 3804-3810.
Article
PubMed
CAS
Google Scholar
Abel B, Thieblemont N, Quesniaux VJ, Brown N, Mpagi J, Miyake K, Bihl F, Ryffel B: Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J Immunol. 2002, 169: 3155-3162.
Article
PubMed
CAS
Google Scholar
Barton GM, Medzhitov R: Toll-like receptor signaling pathways. Science. 2003, 300: 1524-1525.
Article
PubMed
CAS
Google Scholar
Brennan PJ: Structure, function, and biogenesis of the cell wall of mycobacterium tuberculosis. Tuberculosis (Edinb). 2003, 83: 91-97.
Article
CAS
Google Scholar
Janeway CA: Medzhitov R: Innate immune recognition. Annu Rev Immunol. 2002, 20: 197-216.
Article
PubMed
CAS
Google Scholar
Heine H, Ulmer AJ: Recognition of bacterial products by toll-like receptors. Chem Immunol Allergy. 2005, 86: 99-119.
Article
PubMed
CAS
Google Scholar
Seya T, Matsumoto M, Tsuji S, Begum NA, Nomura M, Azuma I, Hayashi A, Toyoshima K: Two receptor theory in innate immune activation: studies on the receptors for bacillus culmet guillen-cell wall skeleton. Arch Immunol Ther Exp (Warsz). 2001, 49 (Suppl 1): S13-S21.
CAS
Google Scholar
Fricke I, Mitchell D, Mittelstädt J, Lehan N, Heine H, Goldmann T, Böhle A, Brandau S: Mycobacteria induce IFN-gamma production in human dendritic cells via triggering of TLR2. J Immunol. 2006, 176: 5173-5182.
Article
PubMed
CAS
Google Scholar
Ma X, Liu Y, Gowen BB, Graviss EA, Clark AG, Musser JM: Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One. 2007, 2: e1318-
Article
PubMed
PubMed Central
Google Scholar
Reiling N, Hölscher C, Fehrenbach A, Kröger S, Kirschning CJ, Goyert S, Ehlers S: Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol. 2002, 169: 3480-3484.
Article
PubMed
CAS
Google Scholar
Branger J, Leemans JC, Florquin S, Weijer S, Speelman P, Van Der Poll T: Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int Immunol. 2004, 16: 509-516.
Article
PubMed
CAS
Google Scholar
Flynn JL, Chan J: Immunology of tuberculosis. Annu. Rev. Immunol. 2001, 19: 93-129.
Article
PubMed
CAS
Google Scholar
Bulut Y, Michelsen KS, Hayrapetian L, Naiki Y, Spallek R, Singh M, Arditi M: Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J Biol Chem. 2005, 280: 20961-20967.
Article
PubMed
CAS
Google Scholar
Ayari C, Bergeron A, LaRue H, Ménard C, Fradet Y: Toll-like receptors in normal and malignant human bladders. J Urol. 2011, 185: 1915-1921.
Article
PubMed
CAS
Google Scholar
Matijevic T, Pavelic J: Toll-like receptors: cost or benefit for cancer?. Curr Pharm Des. 2010, 16: 1081-1090.
Article
PubMed
CAS
Google Scholar
Galli R, Starace D, Busà R, Angelini DF, Paone A, De Cesaris P, Filippini A, Sette C, Battistini L, Ziparo E, Riccioli A: TLR stimulation of prostate tumor cells induces chemokine-mediated recruitment of specific immune cell types. J Immunol. 2010, 184: 6658-6669.
Article
PubMed
CAS
Google Scholar
Huang B, Zhao J, Shen S, Li H, He KL, Shen GX, Mayer L, Unkeless J, Li D, Yuan Y, Zhang GM, Xiong H, Feng ZH: Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Res. 2007, 67: 4346-4352.
Article
PubMed
CAS
Google Scholar
Salaun B, Lebecque S, Matikainen S, Rimoldi D, Romero P: Toll like receptor 3 expressed by melanoma cells as a target for therapy?. Clin Cancer Res. 2007, 13: 4565-4574.
Article
PubMed
CAS
Google Scholar
Salaun B, Coste I, Rissoan MC, Lebecque SJ, Renno T: TLR3 can directly trigger apoptosis in human cancer cells. J Immunol. 2006, 176: 4894-4901.
Article
PubMed
CAS
Google Scholar
Khvalevsky E, Rivkin L, Rachmilewitz J, Galun E, Giladi H: TLR3 signaling in a hepatoma cell line is skewed towards apoptosis. J Cell Biochem. 2007, 100: 1301-1312.
Article
PubMed
CAS
Google Scholar
He W, Liu Q, Wang L, Chen W, Li N, Cao X: TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol. 2007, 44: 2850-2859.
Article
PubMed
CAS
Google Scholar
Xie W, Wang Y, Huang Y, Yang H, Wang J, Hu Z: Toll-like receptor 2 mediates invasion via activating NF-kappaB in MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun. 2009, 379: 1027-1032.
Article
PubMed
CAS
Google Scholar
Goto Y, Arigami T, Kitago M, Nguyen SL, Narita N, Ferrone S, Morton DL, Irie RF, Hoon DS: Activation of toll-like receptors 2, 3, and 4 on human melanoma cells induces inflammatory factors. Mol Cancer Ther. 2008, 7: 3642-3653.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhou M, McFarland-Mancini MM, Funk HM, Husseinzadeh N, Mounajjed T, Drew AF: Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol Immunother. 2009, 58: 1375-1385.
Article
PubMed
CAS
Google Scholar
Matijevic T, Marjanovic M, Pavelic J: Functionally active toll-like receptor 3 on human primary and metastatic cancer cells. Scand J Immunol. 2009, 70: 18-24.
Article
PubMed
CAS
Google Scholar
Matijevic T, Pavelic J: The dual role of TLR3 in metastatic cell line. Clin Exp Metastasis. 2011, 28: 701-712.
Article
PubMed
CAS
Google Scholar
Rakoff-Nahoum S, Medzhitov R: Toll-like receptors and cancer. Nat Rev Cancer. 2009, 9: 57-63.
Article
PubMed
CAS
Google Scholar
Krieg AM: Development of TLR9 agonists for cancer therapy. J Clin Invest. 2007, 117: 1184-1194.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mantovani A, Allavena P, Sica A, Balkwill F: Cancer-related inflammation. Nature. 2008, 454: 436-444.
PubMed
CAS
Google Scholar
Ben-Baruch A: The multifaceted roles of chemokines in malignancy. Cancer Metastasis Rev. 2006, 25: 357-371.
Article
PubMed
CAS
Google Scholar
Allavena P, Sica A, Garlanda C, Mantovani A: The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol. Rev. 2008, 222: 155-161.
Article
PubMed
CAS
Google Scholar
Malmberg KJ, Bryceson YT, Carlsten M, Andersson S, Björklund A, Baumann BC, Fauriat C, Alici E, Dilber MS, Ljunggren HG: NK cell-mediated targeting of human cancer and possibilities for new means of immunotherapy. Cancer Immunol. Immunother. 2008, 57: 1541-1552.
Article
PubMed
CAS
Google Scholar
Proctor MJ, Talwar D, Balmar SM, O'Reilly DS, Foulis AK, Horgan PG, Morrison DS, McMillan DC: The relationship between the presence and site of cancer, an inflammation-based prognostic score and biochemical parameters. Initial results of the Glasgow Inflammation Outcome Study. Br J Cancer. 2010, 103: 870-876.
Article
PubMed
CAS
PubMed Central
Google Scholar
Steinberg GD, Brendler CB, Ichikawa T, Squire RA, Isaacs JT: Characterization of an N-methyl-N-nitrosourea induced autochthonous rat bladder cancer model. Cancer Res. 1990, 50: 6668-6741.
PubMed
CAS
Google Scholar
Reis LO, Pereira TC, Fávaro WJ, Cagnon VHA, Lopes-Cendes I, Ferreira U: Experimental animal model and RNA interference: a promising association for bladder cancer research. World J Urol. 2009, 27: 353-361.
Article
PubMed
CAS
Google Scholar
Gunther JH, Jurczok A, Wulf T, Brandau S, Deinert I, Jocham D, Böhle A: Optimizing syngeneic orthotopic murine bladder cancer (MB49). Cancer Res. 1999, 59: 2834-2837.
PubMed
CAS
Google Scholar
Steinberg GD, Brendler CB, Squire RA, Isaacs JT: Experimental intravesical therapy for superWcial transitional cell carcinoma in a rat bladder tumor model. J Urol. 1991, 145: 647-653.
PubMed
CAS
Google Scholar
O’Donnell MA: Practical applications of intravesical chemotherapy and immunotherapy in high-risk patients with superficial bladder cancer. Urol Clin North Am. 2005, 32: 121-131.
Article
PubMed
Google Scholar
DiPaola RS, Lattime EC: Bacillus Calmette-Guerin Mechanism of Action: The Role of Immunity, Apoptosis, Necrosis and Autophagy. J Urol. 2007, 178: 1840-1841.
Article
PubMed
Google Scholar
Bohle A, Brandau S: Immune mechanisms in bacillus Calmette-Guerin immunotherapy for superficial bladder cancer. J Urol. 2003, 170: 964-969.
Article
PubMed
Google Scholar
Ludwig AT, Moore JM, Luo Y, Chen X, Saltsgaver NA, O'Donnell MA, Griffith TS: Tumor necrosis factor-related apoptosis-inducing ligand: A novel mechanism for Bacillus Calmette-Guerin-induced antitumor activity. Cancer Res. 2004, 64: 338-3390.
Google Scholar
Pavlovich CP, Kräling BM, Stewart RJ, Chen X, Bochner BH, Luster AD, Poppas DP, O'Donnell MA: BCG-induced urinary cytokines inhibit microvascular endothelial cell proliferation. J Urol. 2000, 163: 2014-2021.
Article
PubMed
CAS
Google Scholar
Seow SW, Rahmat JN, Mohamed AA, Mahendran R, Lee YK, Bay BH: Lactobacillus species is more cytotoxic to human bladder cancer cells than Mycobacterium bovis (bacillus Calmette-Guerin). J Urol. 2002, 168: 2236-2239.
Article
PubMed
CAS
Google Scholar
Berry DL, Blumenstein BA, Magyarym DL, Lamm DL, Crawford ED: Local toxicity patterns associated with intravesical bacillus Calmette-Guérin: a Southwest Oncology Group study. Int J Urol. 1995, 3: 98-101.
Article
Google Scholar
Spruck CH: Ohnesiet PF, Gonzalez-Zulueta M: Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res. 1994, 54: 784-788.
PubMed
CAS
Google Scholar
Levine AJ: p53, the cellular gatekeeper for growild-typeh and division. Cell. 1997, 88: 323-331.
Article
PubMed
CAS
Google Scholar
Erill N, Colomer A, Verdu M: Genetic and immunophenotype analyses of TP53 in bladder cancer: TP53 alterations are associated with tumor progression. Diagn Mol Pathol. 2004, 13: 217-223.
Article
PubMed
CAS
Google Scholar
Sarkis AS, Dalbagni G, Cordon-Cardo C: Nuclear overexpression of p53 protein in transitional cell bladder carcinoma: A marker for disease progression. J Natl Cancer Inst. 1993, 85: 53-59.
Article
PubMed
CAS
Google Scholar
Ahrendt SA, Hu Y, Buta M: p53 mutations and survival in stage I non–small-cell lung cancer: Results of a prospective study. J Natl Cancer Inst. 2003, 95: 961-970.
Article
PubMed
CAS
Google Scholar
Wen WH, Press MF: Identification of TP53 mutations in human cancers using oligonucleotide microarrays. Methods Mol Med. 2004, 97: 323-335.
PubMed
CAS
Google Scholar
Olivier M, Langer A: Patrizia Carrieri P: The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res. 2006, 12: 1157-1167.
Article
PubMed
CAS
Google Scholar
Menendez D, Shatz M, Azzam K, Garantziotis S, Fessler MB, Resnick MA: The Toll-like receptor gene family is integrated into human DNA damage and p53 networks. PLoS Genet. 2011, 7: e1001360-
Article
PubMed
CAS
PubMed Central
Google Scholar
Collins LA, Franzblau SG: Microplate Alamar Blue Assay versus BACTEC 460 System for High-Throughput Screening of Compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother. 1997, 41: 1004-1009.
PubMed
CAS
PubMed Central
Google Scholar
North RJ, Izzo AA: Mycobacterial virulence. Virulent strains of Mycobacteria tuberculosis have faster in vivo doubling times and are better equipped to resist growth-inhibiting functions of macrophages in the presence and absence of specific immunity. J Exp Med. 1993, 177: 1723-1733.
Article
PubMed
CAS
Google Scholar
Lenaerts AJ, Gruppo V, Marietta KS, Johnson CM, Driscoll DK: Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob Agents Chemother. 2005, 49: 2294-2301.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kelly BP, Furney SK, Jessen MT, Orme IM: Low-dose aerosol infection model for testing drugs for efficacy against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1996, 40: 2809-2812.
PubMed
CAS
PubMed Central
Google Scholar
Montironi R, Lopez-Beltran A: The 2004 WHO classification of bladder tumors: a summary and commentary. Int J Surg Pathol. 2005, 13: 143-153.
Article
PubMed
Google Scholar