de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8:e180–90. https://doi.org/10.1016/S2214-109X(19)30488-7.
Article
PubMed
Google Scholar
Parkin DM, Hämmerl L, Ferlay J, Kantelhardt EJ. Cancer in Africa 2018: The role of infections. Int J Cancer. 2020;146:2089–103. https://doi.org/10.1002/ijc.32538.
Article
CAS
PubMed
Google Scholar
Avanzi S, Alvisi G, Ripalti A. How virus persistence can initiate the tumorigenesis process. World J Virol. 2013;2:102–9. https://doi.org/10.5501/wjv.v2.i2.102.
Article
PubMed
PubMed Central
Google Scholar
White MK, Pagano JS, Khalili K. Viruses and human cancers: a long road of discovery of molecular paradigms. Clin Microbiol Rev. 2014;27:463–81. https://doi.org/10.1128/CMR.00124-13.
Article
PubMed
PubMed Central
Google Scholar
Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet. 1964;1:702–3.
Article
CAS
Google Scholar
Young LS, Yap LF, Murray PG. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer. 2016;16:789–802. https://doi.org/10.1038/nrc.2016.92.
Article
CAS
PubMed
Google Scholar
Jayasooriya S, de Silva TI, Njie-jobe J, Sanyang C, Leese AM, Bell AI, et al. Early virological and immunological events in asymptomatic Epstein-Barr virus infection in African children. PLoS Pathog. 2015;11:e1004746. https://doi.org/10.1371/journal.ppat.1004746.
Article
CAS
PubMed
PubMed Central
Google Scholar
Becker JA, Smith JA. Return to play after infectious mononucleosis. Sports Health. 2014;6:232–8. https://doi.org/10.1177/1941738114521984.
Article
PubMed
PubMed Central
Google Scholar
Tsao SW, Tsang CM, Lo KW. Epstein-Barr virus infection and nasopharyngeal carcinoma. Philos Trans R Soc Lond B Biol Sci. 2017;372. https://doi.org/10.1098/rstb.2016.0270.
Carrasco-Avino G, Riquelme I, Padilla O, Villaseca M, Aguayo FR, Corvalan AH. The conundrum of the Epstein-Barr virus-associated gastric carcinoma in the Americas. Oncotarget. 2017;8:75687–98. https://doi.org/10.18632/oncotarget.18497.
Article
PubMed
PubMed Central
Google Scholar
de Lima MAP, Teodoro IPP, Galiza LE, Filho PHBM, Marques FM, Pinheiro Junior RFF, et al. Association between Epstein-Barr Virus and Oral Carcinoma: A Systematic Review with Meta-Analysis. Crit Rev Oncog. 2019;24:349–68. https://doi.org/10.1615/CritRevOncog.2019031897.
Article
PubMed
Google Scholar
Henderson EE, Franks C, Fronko G. Chemical carcinogen Epstein-Barr virus (EBV) synergism: EBV genome amplification and site-specific mutation during transformation. Int J Cancer. 1989;43:72–9. https://doi.org/10.1002/ijc.2910430116.
Article
CAS
PubMed
Google Scholar
Wang WH, Chang LK, Liu ST. Molecular interactions of Epstein-Barr virus capsid proteins. J Virol. 2011;85:1615–24. https://doi.org/10.1128/JVI.01565-10.
Article
CAS
PubMed
Google Scholar
Johannsen E, Luftig M, Chase MR, Weicksel S, Cahir-McFarland E, Illanes D, et al. Proteins of purified Epstein-Barr virus. Proc Natl Acad Sci U S A. 2004;101:16286–91. https://doi.org/10.1073/pnas.0407320101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Möhl BS, Chen J, Sathiyamoorthy K, Jardetzky TS, Longnecker R. Structural and Mechanistic Insights into the Tropism of Epstein-Barr Virus. Mol Cells. 2016;39:286–91. https://doi.org/10.14348/molcells.2016.0066.
Article
CAS
PubMed
PubMed Central
Google Scholar
Temple RM, Zhu J, Budgeon L, Christensen ND, Meyers C, Sample CE. Efficient replication of Epstein-Barr virus in stratified epithelium in vitro. Proc Natl Acad Sci U S A. 2014;111:16544–9. https://doi.org/10.1073/pnas.1400818111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Temple RM, Meyers C, Sample CE. Generation and Infection of Organotypic Cultures with Epstein-Barr Virus. Methods Mol Biol. 2017;1532:65–78. https://doi.org/10.1007/978-1-4939-6655-4_4.
Article
CAS
PubMed
Google Scholar
Tsang CM, Deng W, Yip YL, Zeng MS, Lo KW, Tsao SW. Epstein-Barr virus infection and persistence in nasopharyngeal epithelial cells. Chin J Cancer. 2014;33:549–55. https://doi.org/10.5732/cjc.014.10169.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kikuchi K, Noguchi Y, de Rivera MW, Hoshino M, Sakashita H, Yamada T, et al. Detection of Epstein-Barr virus genome and latent infection gene expression in normal epithelia, epithelial dysplasia, and squamous cell carcinoma of the oral cavity. Tumour Biol. 2016;37:3389–404. https://doi.org/10.1007/s13277-015-4167-7.
Article
CAS
PubMed
Google Scholar
Sixbey JW, Vesterinen EH, Nedrud JG, Raab-Traub N, Walton LA, Pagano JS. Replication of Epstein-Barr virus in human epithelial cells infected in vitro. Nature. 1983;306:480–3. https://doi.org/10.1038/306480a0.
Article
CAS
PubMed
Google Scholar
Pegtel DM, Middeldorp J, Thorley-Lawson DA. Epstein-Barr virus infection in ex vivo tonsil epithelial cell cultures of asymptomatic carriers. J Virol. 2004;78:12613–24. https://doi.org/10.1128/JVI.78.22.12613-12624.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller N, Hutt-Fletcher LM. Epstein-Barr virus enters B cells and epithelial cells by different routes. J Virol. 1992;66:3409–14. https://doi.org/10.1128/JVI.66.6.3409-3414.1992.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci U S A. 1984;81:4510–4.
Article
CAS
Google Scholar
Wang X, Hutt-Fletcher LM. Epstein-Barr virus lacking glycoprotein gp42 can bind to B cells but is not able to infect. J Virol. 1998;72:158–63.
Article
CAS
Google Scholar
Wang X, Kenyon WJ, Li Q, Müllberg J, Hutt-Fletcher LM. Epstein-Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J Virol. 1998;72:5552–8.
Article
CAS
Google Scholar
Chesnokova LS, Nishimura SL, Hutt-Fletcher LM. Fusion of epithelial cells by Epstein-Barr virus proteins is triggered by binding of viral glycoproteins gHgL to integrins alphavbeta6 or alphavbeta8. Proc Natl Acad Sci U S A. 2009;106:20464–9. https://doi.org/10.1073/pnas.0907508106.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Sathiyamoorthy K, Zhang X, Schaller S, Perez White BE, Jardetzky TS, et al. Ephrin receptor A2 is a functional entry receptor for Epstein-Barr virus. Nat Microbiol. 2018;3:172–80. https://doi.org/10.1038/s41564-017-0081-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Li Y, Wang HB, Zhang A, Chen ML, Fang ZX, et al. Ephrin receptor A2 is an epithelial cell receptor for Epstein-Barr virus entry. Nat Microbiol. 2018;3:1–8. https://doi.org/10.1038/s41564-017-0080-8.
Article
CAS
PubMed
Google Scholar
Lieberman PM. Chromatin Structure of Epstein-Barr Virus Latent Episomes. Curr Top Microbiol Immunol. 2015;390:71–102. https://doi.org/10.1007/978-3-319-22822-8_5.
Article
CAS
PubMed
Google Scholar
Sears J, Ujihara M, Wong S, Ott C, Middeldorp J, Aiyar A. The amino terminus of Epstein-Barr Virus (EBV) nuclear antigen 1 contains AT hooks that facilitate the replication and partitioning of latent EBV genomes by tethering them to cellular chromosomes. J Virol. 2004;78:11487–505. https://doi.org/10.1128/JVI.78.21.11487-11505.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai K, Thikmyanova N, Wojcechowskyj JA, Delecluse HJ, Lieberman PM. EBV tegument protein BNRF1 disrupts DAXX-ATRX to activate viral early gene transcription. PLoS Pathog. 2011;7:e1002376. https://doi.org/10.1371/journal.ppat.1002376.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rooney CM, Rowe DT, Ragot T, Farrell PJ. The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. J Virol. 1989;63:3109–16.
Article
CAS
Google Scholar
Dharnidharka VR, Webster AC, Martinez OM, Preiksaitis JK, Leblond V, Choquet S. Post-transplant lymphoproliferative disorders. Nat Rev Dis Primers. 2016;2:15088. https://doi.org/10.1038/nrdp.2015.88.
Article
PubMed
Google Scholar
Shannon-Lowe C, Rickinson A. The Global Landscape of EBV-Associated Tumors. Front Oncol. 2019;9:713. https://doi.org/10.3389/fonc.2019.00713.
Article
PubMed
PubMed Central
Google Scholar
Thorley-Lawson DA. EBV Persistence--Introducing the Virus. Curr Top Microbiol Immunol. 2015;390:151–209. https://doi.org/10.1007/978-3-319-22822-8_8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Liu Z, Zeng B, Hu G, Gan R. Epstein-Barr virus-associated gastric cancer: A distinct subtype. Cancer Lett. 2020;495:191–9. https://doi.org/10.1016/j.canlet.2020.09.019.
Article
CAS
PubMed
Google Scholar
Hau PM, Lung HL, Wu M, Tsang CM, Wong KL, Mak NK, et al. Targeting Epstein-Barr Virus in Nasopharyngeal Carcinoma. Front Oncol. 2020;10:600. https://doi.org/10.3389/fonc.2020.00600.
Article
PubMed
PubMed Central
Google Scholar
Hardwick JM, Lieberman PM, Hayward SD. A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J Virol. 1988;62:2274–84.
Article
CAS
Google Scholar
Buettner M, Lang A, Tudor CS, Meyer B, Cruchley A, Barros MH, et al. Lytic Epstein-Barr virus infection in epithelial cells but not in B-lymphocytes is dependent on Blimp1. J Gen Virol. 2012;93:1059–64. https://doi.org/10.1099/vir.0.038661-0.
Article
CAS
PubMed
Google Scholar
Jenkins PJ, Binné UK, Farrell PJ. Histone acetylation and reactivation of Epstein-Barr virus from latency. J Virol. 2000;74:710–20.
Article
CAS
Google Scholar
Li H, Liu S, Hu J, Luo X, Li N. M Bode, A.; Cao, Y. Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int J Biol Sci. 2016;12:1309–18. https://doi.org/10.7150/ijbs.16564.
Article
CAS
PubMed
PubMed Central
Google Scholar
Church TM, Verma D, Thompson J, Swaminathan S. Efficient Translation of Epstein-Barr Virus (EBV) DNA Polymerase Contributes to the Enhanced Lytic Replication Phenotype of M81 EBV. J Virol. 2018;92. https://doi.org/10.1128/JVI.01794-17.
Neuhierl B, Delecluse HJ. The Epstein-Barr virus BMRF1 gene is essential for lytic virus replication. J Virol. 2006;80:5078–81. https://doi.org/10.1128/JVI.80.10.5078-5081.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thierry E, Brennich M, Round A, Buisson M, Burmeister WP, Hutin S. Production and characterisation of Epstein-Barr virus helicase-primase complex and its accessory protein BBLF2/3. Virus Genes. 2015;51:171–81. https://doi.org/10.1007/s11262-015-1233-6.
Article
CAS
PubMed
Google Scholar
Fujii K, Yokoyama N, Kiyono T, Kuzushima K, Homma M, Nishiyama Y, et al. The Epstein-Barr virus pol catalytic subunit physically interacts with the BBLF4-BSLF1-BBLF2/3 complex. J Virol. 2000;74:2550–7.
Article
CAS
Google Scholar
Hammerschmidt W, Sugden B. Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell. 1988;55:427–33.
Article
CAS
Google Scholar
Tsurumi T. Primer terminus recognition and highly processive replication by Epstein-Barr virus DNA polymerase. Biochem J. 1991;280(Pt 3):703–8.
Article
CAS
Google Scholar
Wu L, Li C, Pan L. Nasopharyngeal carcinoma: A review of current updates. Exp Ther Med. 2018;15:3687–92. https://doi.org/10.3892/etm.2018.5878.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carioli G, Negri E, Kawakita D, Garavello W, La Vecchia C, Malvezzi M. Global trends in nasopharyngeal cancer mortality since 1970 and predictions for 2020: Focus on low-risk areas. Int J Cancer. 2017;(140):2256–64. https://doi.org/10.1002/ijc.30660.
Brennan B. Nasopharyngeal carcinoma. Orphanet J Rare Dis. 2006;1:23. https://doi.org/10.1186/1750-1172-1-23.
Article
PubMed
PubMed Central
Google Scholar
Richardo T, Prattapong P, Ngernsombat C, Wisetyaningsih N, Iizasa H, Yoshiyama H, et al. Epstein-Barr Virus Mediated Signaling in Nasopharyngeal Carcinoma Carcinogenesis. Cancers (Basel). 2020:12. https://doi.org/10.3390/cancers12092441.
Shao JY, Ernberg I, Biberfeld P, Heiden T, Zeng YX, Hu LF. Epstein-Barr virus LMP1 status in relation to apoptosis, p53 expression and leucocyte infiltration in nasopharyngeal carcinoma. Anticancer Res. 2004;24:2309–18.
CAS
PubMed
Google Scholar
Liu MT, Chen YR, Chen SC, Hu CY, Lin CS, Chang YT, et al. Epstein-Barr virus latent membrane protein 1 induces micronucleus formation, represses DNA repair and enhances sensitivity to DNA-damaging agents in human epithelial cells. Oncogene. 2004;23:2531–9. https://doi.org/10.1038/sj.onc.1207375.
Article
CAS
PubMed
Google Scholar
Chen Y, Zhou C, Li H, Li Y. Identifying Key Genes for Nasopharyngeal Carcinoma by Prioritized Consensus Differentially Expressed Genes Caused by Aberrant Methylation. J Cancer. 2021;12:874–84. https://doi.org/10.7150/jca.49392.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaneda A, Matsusaka K, Aburatani H, Fukayama M. Epstein-Barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res. 2012;72:3445–50. https://doi.org/10.1158/0008-5472.CAN-11-3919.
Article
CAS
PubMed
Google Scholar
Guo X, Li T, Li F, Xu Y, Wang H, Cheng W, et al. Intermittent abortive reactivation of Epstein-Barr virus during the progression of nasopharyngeal cancer as indicated by elevated antibody levels. Oral Oncol. 2019;93:85–90. https://doi.org/10.1016/j.oraloncology.2019.04.024.
Article
PubMed
Google Scholar
Martel-Renoir D, Grunewald V, Touitou R, Schwaab G, Joab I. Qualitative analysis of the expression of Epstein-Barr virus lytic genes in nasopharyngeal carcinoma biopsies. J Gen Virol. 1995;76(Pt 6):1401–8. https://doi.org/10.1099/0022-1317-76-6-1401.
Article
CAS
PubMed
Google Scholar
O'Neil JD, Owen TJ, Wood VHJ, Date KL, Valentine R, Chukwuma MB, et al. Epstein-Barr virus-encoded EBNA1 modulates the AP-1 transcription factor pathway in nasopharyngeal carcinoma cells and enhances angiogenesis in vitro. J Gen Virol. 2008;89:2833–42. https://doi.org/10.1099/vir.0.2008/003392-0.
Article
CAS
PubMed
Google Scholar
Wang L, Tian WD, Xu X, Nie B, Lu J, Liu X, et al. Epstein-Barr virus nuclear antigen 1 (EBNA1) protein induction of epithelial-mesenchymal transition in nasopharyngeal carcinoma cells. Cancer. 2014;120:363–72. https://doi.org/10.1002/cncr.28418.
Article
CAS
PubMed
Google Scholar
Li Z, Zhou Z, Wu X, Zhou Q, Liao C, Liu Y, et al. LMP1 promotes nasopharyngeal carcinoma metastasis through NTRK2-mediated anoikis resistance. Am J Cancer Res. 2020;10:2083–99.
CAS
PubMed
PubMed Central
Google Scholar
Cai LM, Lyu XM, Luo WR, Cui XF, Ye YF, Yuan CC, et al. EBV-miR-BART7-3p promotes the EMT and metastasis of nasopharyngeal carcinoma cells by suppressing the tumor suppressor PTEN. Oncogene. 2015;34:2156–66. https://doi.org/10.1038/onc.2014.341.
Article
CAS
PubMed
Google Scholar
Yang L, Liu L, Xu Z, Liao W, Feng D, Dong X, et al. EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget. 2015;6:5804–17. https://doi.org/10.18632/oncotarget.3331.
Article
PubMed
PubMed Central
Google Scholar
Ding L, Li LL, Yang J, Tao YG, Ye M, Shi Y, et al. Epstein-Barr virus encoded latent membrane protein 1 modulates nuclear translocation of telomerase reverse transcriptase protein by activating nuclear factor-kappaB p65 in human nasopharyngeal carcinoma cells. Int J Biochem Cell Biol, 2005. 37:1881–9. https://doi.org/10.1016/j.biocel.2005.04.012.
Kase K, Kondo S, Wakisaka N, Dochi H, Mizokami H, Kobayashi E, et al. Epstein-Barr Virus LMP1 Induces Soluble PD-L1 in Nasopharyngeal Carcinoma. Microorganisms. 2021;9. https://doi.org/10.3390/microorganisms9030603.
Jiang R, Cabras G, Sheng W, Zeng Y, Ooka T. Synergism of BARF1 with Ras induces malignant transformation in primary primate epithelial cells and human nasopharyngeal epithelial cells. Neoplasia. 2009;11:964–73. https://doi.org/10.1593/neo.09706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Luo D, Xie Z, He H, Duan Z. The Oncogenic Role of miR-BART19-3p in Epstein-Barr Virus-Associated Diseases. Biomed Res Int. 2020;2020:5217039. https://doi.org/10.1155/2020/5217039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choy EY, Siu KL, Kok KH, Lung RW, Tsang CM, To KF, et al. An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J Exp Med. 2008;205:2551–60. https://doi.org/10.1084/jem.20072581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin C, Zong J, Lin W, Wang M, Xu Y, Zhou R, et al. EBV-miR-BART8-3p induces epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma cells through activating NF-κB and Erk1/2 pathways. J Exp Clin Cancer Res. 2018;37:283. https://doi.org/10.1186/s13046-018-0953-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86. https://doi.org/10.1002/ijc.29210.
Article
CAS
Google Scholar
Sandoval-Bórquez A, Saavedra K, Carrasco-Avino G, Garcia-Bloj B, Fry J, Wichmann I, et al. Noncoding Genomics in Gastric Cancer and the Gastric Precancerous Cascade: Pathogenesis and Biomarkers. Dis Markers. 2015;2015:503762. https://doi.org/10.1155/2015/503762.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yusefi AR, Bagheri Lankarani K, Bastani P, Radinmanesh M, Kavosi Z. Risk Factors for Gastric Cancer: A Systematic Review. Asian Pac J Cancer Prev. 2018;19:591–603. https://doi.org/10.22034/APJCP.2018.19.3.591.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burke AP, Yen TS, Shekitka KM, Sobin LH. Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod Pathol. 1990;3:377–80.
CAS
PubMed
Google Scholar
Shibata D, Weiss LM. Epstein-Barr virus-associated gastric adenocarcinoma. Am J Pathol. 1992;140:769–74.
CAS
PubMed
PubMed Central
Google Scholar
Chen XZ, Chen H, Castro FA, Hu JK, Brenner H. Epstein-Barr virus infection and gastric cancer: a systematic review. Medicine (Baltimore). 2015;94:e792. https://doi.org/10.1097/MD.0000000000000792.
Article
CAS
Google Scholar
Ribeiro J, Oliveira C, Malta M, Sousa H. Epstein-Barr virus gene expression and latency pattern in gastric carcinomas: a systematic review. Future Oncol. 2017;13:567–79. https://doi.org/10.2217/fon-2016-0475.
Article
CAS
PubMed
Google Scholar
Wang A, Zhang W, Jin M, Zhang J, Li S, Tong F, et al. Differential expression of EBV proteins LMP1 and BHFR1 in EBV-associated gastric and nasopharyngeal cancer tissues. Mol Med Rep. 2016;13:4151–8. https://doi.org/10.3892/mmr.2016.5087.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang KC, Huang GC, Jones D, Tsao CJ, Lee JY, Su IJ. Distribution and prognosis of WHO lymphoma subtypes in Taiwan reveals a low incidence of germinal-center derived tumors. Leuk Lymphoma. 2004;45:1375–84. https://doi.org/10.1080/10428194042000198849.
Article
CAS
PubMed
Google Scholar
Makita S, Maruyama D, Maeshima AM, Taniguchi H, Miyamoto K, Kitahara H, et al. Clinical features and outcomes of 139 Japanese patients with Hodgkin lymphoma. Int J Hematol. 2016;104:236–44. https://doi.org/10.1007/s12185-016-2007-1.
Article
PubMed
Google Scholar
Meng J, Chang C, Pan H, Zhu F, Xiao Y, Liu T, et al. Epidemiologic characteristics of malignant lymphoma in Hubei, China: A single-center 5-year retrospective study. Medicine (Baltimore). 2018;97:e12120. https://doi.org/10.1097/MD.0000000000012120.
Article
Google Scholar
Piris MA, Medeiros LJ, Chang KC. Hodgkin lymphoma: a review of pathological features and recent advances in pathogenesis. Pathology. 2020;52:154–65. https://doi.org/10.1016/j.pathol.2019.09.005.
Article
CAS
PubMed
Google Scholar
Küppers R. The biology of Hodgkin's lymphoma. Nat Rev Cancer. 2009;9:15–27. https://doi.org/10.1038/nrc2542.
Article
CAS
PubMed
Google Scholar
Ambinder RF, Browning PJ, Lorenzana I, Leventhal BG, Cosenza H, Mann RB, et al. Epstein-Barr virus and childhood Hodgkin's disease in Honduras and the United States. Blood. 1993;81:462–7.
Article
CAS
Google Scholar
Chang KC, Khen NT, Jones D, Su IJ. Epstein-Barr virus is associated with all histological subtypes of Hodgkin lymphoma in Vietnamese children with special emphasis on the entity of lymphocyte predominance subtype. Hum Pathol. 2005;36:747–55. https://doi.org/10.1016/j.humpath.2005.05.003.
Article
PubMed
Google Scholar
Schrader A, Bentink S, Spang R, Lenze D, Hummel M, Kuo M, et al. High Myc activity is an independent negative prognostic factor for diffuse large B cell lymphomas. Int J Cancer. 2012;131:E348–61. https://doi.org/10.1002/ijc.26423.
Article
CAS
PubMed
Google Scholar
Graham BS, Lynch DT. Burkitt Lymphoma. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021.
Chabay P, Lens D, Hassan R, Rodríguez Pinilla SM, Valvert Gamboa F, Rivera I, et al. Lymphotropic Viruses EBV, KSHV and HTLV in Latin America: Epidemiology and Associated Malignancies. A Literature-Based Study by the RIAL-CYTED. Cancers (Basel). 2020:12. https://doi.org/10.3390/cancers12082166.
Magrath IT. African Burkitt's lymphoma. History, biology, clinical features, and treatment. Am J Pediatr Hematol Oncol. 1991;13:222–46.
Article
CAS
Google Scholar
Gastwirt JP, Roschewski M. Management of adults with Burkitt lymphoma. Clin Adv Hematol Oncol. 2018;16:812–22.
PubMed
Google Scholar
Linch DC. Burkitt lymphoma in adults. Br J Haematol. 2012;156:693–703. https://doi.org/10.1111/j.1365-2141.2011.08877.x.
Article
CAS
PubMed
Google Scholar
Mbulaiteye SM, Anderson WF, Ferlay J, Bhatia K, Chang C, Rosenberg PS, et al. Pediatric, elderly, and emerging adult-onset peaks in Burkitt's lymphoma incidence diagnosed in four continents, excluding Africa. Am J Hematol. 2012;87:573–8. https://doi.org/10.1002/ajh.23187.
Article
PubMed
PubMed Central
Google Scholar
Dunleavy K, Little RF, Wilson WH. Update on Burkitt Lymphoma. Hematol Oncol Clin North Am. 2016;30:1333–43. https://doi.org/10.1016/j.hoc.2016.07.009.
Article
PubMed
Google Scholar
Mbulaiteye SM, Anderson WF, Bhatia K, Rosenberg PS, Linet MS, Devesa SS. Trimodal age-specific incidence patterns for Burkitt lymphoma in the United States, 1973-2005. Int J Cancer. 2010;126:1732–9. https://doi.org/10.1002/ijc.24934.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casulo C, Friedberg JW. Burkitt lymphoma- a rare but challenging lymphoma. Best Pract Res Clin Haematol. 2018;31:279–84. https://doi.org/10.1016/j.beha.2018.07.013.
Article
PubMed
Google Scholar
Moormann AM, Bailey JA. Malaria - how this parasitic infection aids and abets EBV-associated Burkitt lymphomagenesis. Curr Opin Virol. 2016;20:78–84. https://doi.org/10.1016/j.coviro.2016.09.006.
Article
PubMed
PubMed Central
Google Scholar
Choi SJ, Jung SW, Huh S, Cho H, Kang H. Phylogenetic comparison of Epstein-Barr virus genomes. J Microbiol. 2018;56:525–33. https://doi.org/10.1007/s12275-018-8039-x.
Article
CAS
PubMed
Google Scholar
Quintana MDP, Smith-Togobo C, Moormann A, Hviid L. Endemic Burkitt lymphoma - an aggressive childhood cancer linked to Plasmodium falciparum exposure, but not to exposure to other malaria parasites. APMIS. 2020;128:129–35. https://doi.org/10.1111/apm.13018.
Article
PubMed
Google Scholar
Ferla V, Rossi FG, Goldaniga MC, Baldini L. Biological Difference Between Epstein-Barr Virus Positive and Negative Post-transplant Lymphoproliferative Disorders and Their Clinical Impact. Front Oncol. 2020;10:506. https://doi.org/10.3389/fonc.2020.00506.
Article
PubMed
PubMed Central
Google Scholar
He Q, Zhou Y, Fu C, Zhu W, Zhou J, Liu S, et al. Lymphoepithelioma is a nonkeratinizing squamous cell carcinoma with Epstein-Barr virus infection in China. J Cancer Res Ther. 2017;13:807–12. https://doi.org/10.4103/jcrt.JCRT_280_17.
Article
CAS
PubMed
Google Scholar
Wenig BM. Lymphoepithelial-like carcinomas of the head and neck. Semin Diagn Pathol. 2015;32:74–86. https://doi.org/10.1053/j.semdp.2014.12.004.
Article
PubMed
Google Scholar
Rytkönen AE, Hirvikoski PP, Salo TA. Lymphoepithelial carcinoma: two case reports and a systematic review of oral and sinonasal cases. Head Neck Pathol. 2011;5:327–34. https://doi.org/10.1007/s12105-011-0278-7.
Article
PubMed
PubMed Central
Google Scholar
Mozaffari HR, Ramezani M, Janbakhsh A, Sadeghi M. Malignant Salivary Gland Tumors and Epstein-Barr Virus (EBV) Infection: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev. 2017;18:1201–6. https://doi.org/10.22034/APJCP.2017.18.5.1201.
Article
PubMed
PubMed Central
Google Scholar
Han AJ, Xiong M, Zong YS. Association of Epstein-Barr virus with lymphoepithelioma-like carcinoma of the lung in southern China. Am J Clin Pathol. 2000;114:220–6. https://doi.org/10.1309/148K-ND54-6NJX-NA61.
Article
CAS
PubMed
Google Scholar
Lee JH, Kim SH, Han SH, An JS, Lee ES, Kim YS. Clinicopathological and molecular characteristics of Epstein-Barr virus-associated gastric carcinoma: a meta-analysis. J Gastroenterol Hepatol. 2009;24:354–65. https://doi.org/10.1111/j.1440-1746.2009.05775.x.
Article
PubMed
Google Scholar
Yordanov A, Karamanliev M, Karcheva M, Konsoulova A, Vasileva-Slaveva M, Strashilov S. Single-Center Study of Lymphoepithelioma-Like Carcinoma of Uterine Cervix over a 10-Year Period. Medicina (Kaunas). 2019:55. https://doi.org/10.3390/medicina55120780.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021. https://doi.org/10.3322/caac.21660.
Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–9. https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F.
Article
CAS
PubMed
Google Scholar
Schlecht NF, Platt RW, Duarte-Franco E, Costa MC, Sobrinho JP, Prado JC, et al. Human papillomavirus infection and time to progression and regression of cervical intraepithelial neoplasia. J Natl Cancer Inst. 2003;95:1336–43. https://doi.org/10.1093/jnci/djg037.
Article
PubMed
Google Scholar
de Lima MAP, Neto PJN, Lima LPM, Gonçalves Júnior J, Teixeira Junior AG, Teodoro IPP, et al. Association between Epstein-Barr virus (EBV) and cervical carcinoma: A meta-analysis. Gynecol Oncol. 2018;148:317–28. https://doi.org/10.1016/j.ygyno.2017.10.005.
Article
PubMed
Google Scholar
Sasagawa T, Shimakage M, Nakamura M, Sakaike J, Ishikawa H, Inoue M. Epstein-Barr virus (EBV) genes expression in cervical intraepithelial neoplasia and invasive cervical cancer: a comparative study with human papillomavirus (HPV) infection. Hum Pathol. 2000;31:318–26. https://doi.org/10.1016/s0046-8177(00)80245-2.
Article
CAS
PubMed
Google Scholar
Khenchouche A, Sadouki N, Boudriche A, Houali K, Graba A, Ooka T, et al. Human papillomavirus and Epstein-Barr virus co-infection in cervical carcinoma in Algerian women. Virol J. 2013;10:340. https://doi.org/10.1186/1743-422X-10-340.
Article
PubMed
PubMed Central
Google Scholar
Aguayo F, Muñoz JP, Perez-Dominguez F, Carrillo-Beltrán D, Oliva C, Calaf GM, Blanco R, Nuñez-Acurio D. High-Risk Human Papillomavirus and Tobacco Smoke Interactions in Epithelial Carcinogenesis. Cancers (Basel). 2020;12(8):2201. https://doi.org/10.3390/cancers12082201.
Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, et al. Risk Factors and Preventions of Breast Cancer. Int J Biol Sci. 2017;13:1387–97. https://doi.org/10.7150/ijbs.21635.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gannon OM, Antonsson A, Bennett IC, Saunders NA. Viral infections and breast cancer - A current perspective. Cancer Lett. 2018;420:182–9. https://doi.org/10.1016/j.canlet.2018.01.076.
Article
CAS
PubMed
Google Scholar
Al Hamad M, Matalka I, Al Zoubi MS, Armogida I, Khasawneh R, Al-Husaini M, et al. Human Mammary Tumor Virus, Human Papilloma Virus, and Epstein-Barr Virus Infection Are Associated With Sporadic Breast Cancer Metastasis. Breast Cancer (Auckl). 2020;14:1178223420976388. https://doi.org/10.1177/1178223420976388.
Article
Google Scholar
Ghaffari H, Tavakoli A, Nafissi N, Farahmand M, Ghorbani S, Moochani SS, et al. Human cytomegalovirus and Epstein-Barr virus infections in breast cancer: A molecular study on Iranian women. Breast Dis. 2021. https://doi.org/10.3233/BD-201019.
Khatami A, Pormohammad A, Farzi R, Saadati H, Mehrabi M, Kiani SJ, et al. Bovine Leukemia virus (BLV) and risk of breast cancer: a systematic review and meta-analysis of case-control studies. Infect Agent Cancer. 2020;15:48. https://doi.org/10.1186/s13027-020-00314-7.
Article
PubMed
PubMed Central
Google Scholar
Farahmand M, Monavari SH, Shoja Z, Ghaffari H, Tavakoli M, Tavakoli A. Epstein-Barr virus and risk of breast cancer: a systematic review and meta-analysis. Future Oncol. 2019;15:2873–85. https://doi.org/10.2217/fon-2019-0232.
Article
CAS
PubMed
Google Scholar
Hu H, Luo ML, Desmedt C, Nabavi S, Yadegarynia S, Hong A, et al. Epstein-Barr Virus Infection of Mammary Epithelial Cells Promotes Malignant Transformation. EBioMedicine. 2016;9:148–60. https://doi.org/10.1016/j.ebiom.2016.05.025.
Article
PubMed
PubMed Central
Google Scholar
Arbach H, Viglasky V, Lefeu F, Guinebretière JM, Ramirez V, Bride N, et al. Epstein-Barr virus (EBV) genome and expression in breast cancer tissue: effect of EBV infection of breast cancer cells on resistance to paclitaxel (Taxol). J Virol. 2006;80:845–53. https://doi.org/10.1128/JVI.80.2.845-853.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinclair AJ, Moalwi MH, Amoaten T. Is EBV Associated with Breast Cancer in Specific Geographic Locations? Cancers (Basel). 2021;13. https://doi.org/10.3390/cancers13040819.
Johnson CM, Wei C, Ensor JE, Smolenski DJ, Amos CI, Levin B, et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control. 2013;24:1207–22. https://doi.org/10.1007/s10552-013-0201-5.
Article
PubMed
PubMed Central
Google Scholar
Carr PR, Walter V, Brenner H, Hoffmeister M. Meat subtypes and their association with colorectal cancer: Systematic review and meta-analysis. Int J Cancer. 2016;138:293–302. https://doi.org/10.1002/ijc.29423.
Article
CAS
PubMed
Google Scholar
Chen H, Chen XZ, Waterboer T, Castro FA, Brenner H. Viral infections and colorectal cancer: a systematic review of epidemiological studies. Int J Cancer. 2015;137:12–24. https://doi.org/10.1002/ijc.29180.
Article
CAS
PubMed
Google Scholar
Bedri S, Sultan AA, Alkhalaf M, Al Moustafa AE, Vranic S. Epstein-Barr virus (EBV) status in colorectal cancer: a mini review. Hum Vaccin Immunother. 2019;15:603–10. https://doi.org/10.1080/21645515.2018.1543525.
Article
PubMed
Google Scholar
Gupta I, Al Farsi H, Jabeen A, Skenderi F, Al-Thawadi H, AlAhmad YM, et al. High-Risk Human Papillomaviruses and Epstein-Barr Virus in Colorectal Cancer and Their Association with Clinicopathological Status. Pathogens. 2020;9. https://doi.org/10.3390/pathogens9060452.
Karpinski P, Myszka A, Ramsey D, Kielan W, Sasiadek MM. Detection of viral DNA sequences in sporadic colorectal cancers in relation to CpG island methylation and methylator phenotype. Tumour Biol. 2011;32:653–9. https://doi.org/10.1007/s13277-011-0165-6.
Article
CAS
PubMed
Google Scholar
Morales-Sánchez A, Fuentes-Panana EM. The Immunomodulatory Capacity of an Epstein-Barr Virus Abortive Lytic Cycle: Potential Contribution to Viral Tumorigenesis. Cancers (Basel). 2018:10. https://doi.org/10.3390/cancers10040098.
Cochet C, Martel-Renoir D, Grunewald V, Bosq J, Cochet G, Schwaab G, et al. Expression of the Epstein-Barr virus immediate early gene, BZLF1, in nasopharyngeal carcinoma tumor cells. Virology. 1993;197:358–65. https://doi.org/10.1006/viro.1993.1597.
Article
CAS
PubMed
Google Scholar
Ramayanti O, Juwana H, Verkuijlen SA, Adham M, Pegtel MD, Greijer AE, et al. Epstein-Barr virus mRNA profiles and viral DNA methylation status in nasopharyngeal brushings from nasopharyngeal carcinoma patients reflect tumor origin. Int J Cancer. 2017;140:149–62. https://doi.org/10.1002/ijc.30418.
Article
CAS
PubMed
Google Scholar
Rosemarie Q, Sugden B. Epstein-Barr Virus: How Its Lytic Phase Contributes to Oncogenesis. Microorganisms. 2020;8. https://doi.org/10.3390/microorganisms8111824.
Münz C. Tumor Microenvironment Conditioning by Abortive Lytic Replication of Oncogenic γ-Herpesviruses. Adv Exp Med Biol. 2020;1225:127–35. https://doi.org/10.1007/978-3-030-35727-6_9.
Article
CAS
PubMed
Google Scholar
Hong GK, Gulley ML, Feng WH, Delecluse HJ, Holley-Guthrie E, Kenney SC. Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J Virol. 2005;79:13993–4003. https://doi.org/10.1128/JVI.79.22.13993-14003.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma SD, Yu X, Mertz JE, Gumperz JE, Reinheim E, Zhou Y, et al. An Epstein-Barr Virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model. J Virol. 2012;86:7976–87. https://doi.org/10.1128/JVI.00770-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang Y, Tung CH, Huang YT, Lu J, Chen JY, Tsai CH. Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol. 1999;73:8857–66.
Article
CAS
Google Scholar
Wu CC, Liu MT, Chang YT, Fang CY, Chou SP, Liao HW, et al. Epstein-Barr virus DNase (BGLF5) induces genomic instability in human epithelial cells. Nucleic Acids Res. 2010:38, 1932–1949. https://doi.org/10.1093/nar/gkp1169.
Chiu SH, Wu CC, Fang CY, Yu SL, Hsu HY, Chow YH, et al. Epstein-Barr virus BALF3 mediates genomic instability and progressive malignancy in nasopharyngeal carcinoma. Oncotarget. 2014;5:8583–601. https://doi.org/10.18632/oncotarget.2323.
Article
PubMed
PubMed Central
Google Scholar
Humans, I.W.G.o.t.E.o.C.R.t. Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum 2004, 83, 1-1438.
Jethwa AR, Khariwala SS. Tobacco-related carcinogenesis in head and neck cancer. Cancer Metastasis Rev. 2017;36:411–23. https://doi.org/10.1007/s10555-017-9689-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phillips DH, Venitt S. DNA and protein adducts in human tissues resulting from exposure to tobacco smoke. Int J Cancer. 2012;131:2733–53. https://doi.org/10.1002/ijc.27827.
Article
CAS
PubMed
Google Scholar
Huang RY, Chen GG. Cigarette smoking, cyclooxygenase-2 pathway and cancer. Biochim Biophys Acta. 1815;2011:158–69. https://doi.org/10.1016/j.bbcan.2010.11.005.
Article
CAS
Google Scholar
Chen RJ, Chang LW, Lin P, Wang YJ. Epigenetic effects and molecular mechanisms of tumorigenesis induced by cigarette smoke: an overview. J Oncol. 2011;2011:654931. https://doi.org/10.1155/2011/654931.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Baecker A, Wu M, Zhou JY, Yang J, Han RQ, et al. Interaction between tobacco smoking and hepatitis B virus infection on the risk of liver cancer in a Chinese population. Int J Cancer. 2018;142:1560–7. https://doi.org/10.1002/ijc.31181.
Article
CAS
PubMed
Google Scholar
Hassan MM, Spitz MR, Thomas MB, El-Deeb AS, Glover KY, Nguyen NT, et al. Effect of different types of smoking and synergism with hepatitis C virus on risk of hepatocellular carcinoma in American men and women: case-control study. Int J Cancer. 2008:123, 1883–1891. https://doi.org/10.1002/ijc.23730.
Camargo MC, Koriyama C, Matsuo K, Kim WH, Herrera-Goepfert R, Liao LM, et al. Case-case comparison of smoking and alcohol risk associations with Epstein-Barr virus-positive gastric cancer. Int J Cancer. 2014;134:948–53. https://doi.org/10.1002/ijc.28402.
Article
CAS
PubMed
Google Scholar
Chang ET, Liu Z, Hildesheim A, Liu Q, Cai Y, Zhang Z, et al. Active and Passive Smoking and Risk of Nasopharyngeal Carcinoma: A Population-Based Case-Control Study in Southern China. Am J Epidemiol. 2017;185:1272–80. https://doi.org/10.1093/aje/kwx018.
Article
PubMed
PubMed Central
Google Scholar
Lin JH, Jiang CQ, Ho SY, Zhang WS, Mai ZM, Xu L, et al. Smoking and nasopharyngeal carcinoma mortality: a cohort study of 101,823 adults in Guangzhou. China. BMC Cancer. 2015;15:906. https://doi.org/10.1186/s12885-015-1902-9.
Article
PubMed
Google Scholar
Xu FH, Xiong D, Xu YF, Cao SM, Xue WQ, Qin HD, et al. An epidemiological and molecular study of the relationship between smoking, risk of nasopharyngeal carcinoma, and Epstein-Barr virus activation. J Natl Cancer Inst. 2012;104:1396–410. https://doi.org/10.1093/jnci/djs320.
Article
CAS
PubMed
Google Scholar
Glaser SL, Keegan TH, Clarke CA, Darrow LA, Gomez SL, Dorfman RF, et al. Smoking and Hodgkin lymphoma risk in women United States. Cancer Causes Control. 2004;15:387–97. https://doi.org/10.1023/B:CACO.0000027497.00558.e2.
Article
PubMed
Google Scholar
Bakkalci D, Jia Y, Winter JR, Lewis JE, Taylor GS, Stagg HR. Risk factors for Epstein Barr virus-associated cancers: a systematic review, critical appraisal, and mapping of the epidemiological evidence. J Glob Health. 2020;10:010405. https://doi.org/10.7189/jogh.10.010405.
Article
PubMed
PubMed Central
Google Scholar
Hsu WL, Chien YC, Huang YT, Yu KJ, Ko JY, Lin CY, et al. Cigarette smoking increases the risk of nasopharyngeal carcinoma through the elevated level of IgA antibody against Epstein-Barr virus capsid antigen: A mediation analysis. Cancer Med. 2020:9, 1867–1876. https://doi.org/10.1002/cam4.2832.
Okekpa SI, S M N Mydin RB, Mangantig E, Azmi NSA, Zahari SNS, Kaur G, et al. Nasopharyngeal Carcinoma (NPC) Risk Factors: A Systematic Review and Meta-Analysis of the Association with Lifestyle, Diets, Socioeconomic and Sociodemographic in Asian Region. Asian Pac J Cancer Prev. 2019;20:3505–14. https://doi.org/10.31557/APJCP.2019.20.11.3505.
Article
PubMed
PubMed Central
Google Scholar
Long M, Fu Z, Li P, Nie Z. Cigarette smoking and the risk of nasopharyngeal carcinoma: a meta-analysis of epidemiological studies. BMJ Open. 2017;7:e016582. https://doi.org/10.1136/bmjopen-2017-016582.
Article
PubMed
PubMed Central
Google Scholar
Zhou T, Yang DW, He YQ, Xue WQ, Liao Y, Zheng MQ, et al. Associations between environmental factors and serological Epstein-Barr virus antibodies in patients with nasopharyngeal carcinoma in South China. Cancer Med. 2019;8:4852–66. https://doi.org/10.1002/cam4.2348.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu T, Lin CY, Xie SH, Chen GH, Lu YQ, Ling W, et al. Smoking can increase nasopharyngeal carcinoma risk by repeatedly reactivating Epstein-Barr Virus: An analysis of a prospective study in southern China. Cancer Med. 2019;8:2561–71. https://doi.org/10.1002/cam4.2083.
Article
CAS
PubMed
PubMed Central
Google Scholar
He YQ, Xue WQ, Xu FH, Xu YF, Zhang JB, Yu HL, et al. The Relationship Between Environmental Factors and the Profile of Epstein-Barr Virus Antibodies in the Lytic and Latent Infection Periods in Healthy Populations from Endemic and Non-Endemic Nasopharyngeal Carcinoma Areas in China. EBioMedicine. 2018;30:184–91. https://doi.org/10.1016/j.ebiom.2018.02.019.
Article
PubMed
PubMed Central
Google Scholar
Yang QY, He YQ, Xue WQ, Zhou T, Liao Y, Zheng MQ, et al. Association Between Serum Cotinine Level and Serological Markers of Epstein-Barr Virus in Healthy Subjects in South China Where Nasopharyngeal Carcinoma Is Endemic. Front Oncol. 2019;9:865. https://doi.org/10.3389/fonc.2019.00865.
Article
PubMed
PubMed Central
Google Scholar
Chen Y, Xu Y, Zhao W, Xiao X, Zhou X, Lin L, et al. Lack of association between cigarette smoking and Epstein Barr virus reactivation in the nasopharynx in people with elevated EBV IgA antibody titres. BMC Cancer. 2018;18:190. https://doi.org/10.1186/s12885-018-4110-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pathmanathan R, Prasad U, Sadler R, Flynn K, Raab-Traub N. Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med. 1995;333:693–8. https://doi.org/10.1056/NEJM199509143331103.
Article
CAS
PubMed
Google Scholar
Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4:757–68. https://doi.org/10.1038/nrc1452.
Article
CAS
PubMed
Google Scholar
Wei L, Griego AM, Chu M, Ozbun MA. Tobacco exposure results in increased E6 and E7 oncogene expression, DNA damage and mutation rates in cells maintaining episomal human papillomavirus 16 genomes. Carcinogenesis. 2014;35:2373–81. https://doi.org/10.1093/carcin/bgu156.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pena N, Carrillo D, Munoz JP, Chnaiderman J, Urzua U, Leon O, et al. Tobacco Smoke Activates Human Papillomavirus 16 p97 Promoter and Cooperates with High-Risk E6/E7 for Oxidative DNA Damage in Lung Cells. Plos One. 2015;10. https://doi.org/10.1371/journal.pone.0123029.
Tsang CM, Yip YL, Lo KW, Deng W, To KF, Hau PM, et al. Cyclin D1 overexpression supports stable EBV infection in nasopharyngeal epithelial cells. Proc Natl Acad Sci U S A. 2012;109:E3473–82. https://doi.org/10.1073/pnas.1202637109.
Article
PubMed
PubMed Central
Google Scholar
Lo KW, Chung GT, To KF. Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin Cancer Biol. 2012;22:79–86. https://doi.org/10.1016/j.semcancer.2011.12.011.
Article
CAS
PubMed
Google Scholar
Lo KW, Huang DP, Lau KM. p16 gene alterations in nasopharyngeal carcinoma. Cancer Res. 1995;55:2039–43.
CAS
PubMed
Google Scholar
Prueitt RL, Goodman JE, Valberg PA. Radionuclides in cigarettes may lead to carcinogenesis via p16(INK4a) inactivation. J Environ Radioact. 2009;100:157–61. https://doi.org/10.1016/j.jenvrad.2008.11.008.
Article
CAS
PubMed
Google Scholar
Guzman LM, Koriyama C, Akiba S, Eizuru Y, Castillo D, Corvalan A, et al. High frequency of p16 promoter methylation in non-small cell lung carcinomas from Chile. Biol Res. 2007;40:365–72. S0716-97602007000400011.
von Zeidler SV, Miracca EC, Nagai MA, Birman EG. Hypermethylation of the p16 gene in normal oral mucosa of smokers. Int J Mol Med. 2004;14:807–11. https://doi.org/10.3892/ijmm.14.5.807.
Article
Google Scholar
Xu J, Gimenez-Conti IB, Cunningham JE, Collet AM, Luna MA, Lanfranchi HE, et al. Alterations of p53, cyclin D1, Rb, and H-ras in human oral carcinomas related to tobacco use. Cancer. 1998;83:204–12. https://doi.org/10.1002/(sici)1097-0142(19980715)83:2<204::aid-cncr2>3.0.co;2-q.
Article
CAS
PubMed
Google Scholar
Suzuki S, Cohen SM, Arnold LL, Pennington KL, Kato H, Naiki T, et al. Cotinine, a major nicotine metabolite, induces cell proliferation on urothelium in vitro and in vivo. Toxicology. 2020;429:152325. https://doi.org/10.1016/j.tox.2019.152325.
Article
CAS
PubMed
Google Scholar
Calaf GM, Echiburú-Chau C. Synergistic effect of malathion and estrogen on mammary gland carcinogenesis. Oncol Rep. 2012;28:640–6. https://doi.org/10.3892/or.2012.1817.
Article
CAS
PubMed
Google Scholar
Calaf GM, Bleak TC, Muñoz JP, Aguayo F. Markers of epithelial-mesenchymal transition in an experimental breast cancer model induced by organophosphorous pesticides and estrogen. Oncol Lett. 2020;20:84. https://doi.org/10.3892/ol.2020.11945.
Article
CAS
PubMed
PubMed Central
Google Scholar
Navaranjan G, Hohenadel K, Blair A, Demers PA, Spinelli JJ, Pahwa P, et al. Exposures to multiple pesticides and the risk of Hodgkin lymphoma in Canadian men. Cancer Causes Control. 1661-1673;2013:24. https://doi.org/10.1007/s10552-013-0240-y.
Article
Google Scholar
Luo D, Zhou T, Tao Y, Feng Y, Shen X, Mei S. Exposure to organochlorine pesticides and non-Hodgkin lymphoma: a meta-analysis of observational studies. Sci Rep. 2016;6:25768. https://doi.org/10.1038/srep25768.
Article
CAS
PubMed
PubMed Central
Google Scholar
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Organophosphate Insecticides and Herbicides. Lyon (FR): International Agency for Research on Cancer; 2017.
Calaf GM, Garrido F. Catechol estrogens as biomarkers for mammary gland cancer. Int J Oncol. 2011;39:177–83. https://doi.org/10.3892/ijo.2011.1008.
Article
CAS
PubMed
Google Scholar
Muñoz JP, Bleak TC, Calaf GM. Glyphosate and the key characteristics of an endocrine disruptor: A review. Chemosphere. 2020;128619. https://doi.org/10.1016/j.chemosphere.2020.128619.
Zhao L, Xie F, Wang TT, Liu MY, Li JL, Shang L, et al. Chlorpyrifos Induces the Expression of the Epstein-Barr Virus Lytic Cycle Activator BZLF-1 via Reactive Oxygen Species. Oxid Med Cell Longev. 2015;2015:309125. https://doi.org/10.1155/2015/309125.
Article
PubMed
PubMed Central
Google Scholar
Hardell E, Eriksson M, Lindström G, Van Bavel B, Linde A, Carlberg M, et al. Case-control study on concentrations of organohalogen compounds and titers of antibodies to Epstein-Barr virus antigens in the etiology of non-Hodgkin lymphoma. Leuk Lymphoma. 2001;42:619–29. https://doi.org/10.3109/10428190109099322.
Article
CAS
PubMed
Google Scholar
Hardell L, Eriksson M. A case-control study of non-Hodgkin lymphoma and exposure to pesticides. Cancer. 1999;85:1353–60. https://doi.org/10.1002/(sici)1097-0142(19990315)85:6<1353::aid-cncr19>3.0.co;2-1.
Article
CAS
PubMed
Google Scholar
Hardell L, Lindström G, van Bavel B, Hardell K, Linde A, Carlberg M, et al. Adipose tissue concentrations of dioxins and dibenzofurans, titers of antibodies to Epstein-Barr virus early antigen and the risk for non-Hodgkin lymphoma. Environ Res. 2001;87:99–107. https://doi.org/10.1006/enrs.2001.4295.
Article
CAS
PubMed
Google Scholar
Nordström M, Hardell L, Lindström G, Wingfors H, Hardell K, Linde A. Concentrations of organochlorines related to titers to Epstein-Barr virus early antigen IgG as risk factors for hairy cell leukemia. Environ Health Perspect. 2000;108:441–5. https://doi.org/10.1289/ehp.108-1638040.
Article
PubMed
PubMed Central
Google Scholar
Harabuchi Y, Yamanaka N, Kataura A, Imai S, Kinoshita T, Mizuno F, et al. Epstein-Barr virus in nasal T-cell lymphomas in patients with lethal midline granuloma. Lancet. 1990;335:128–30. https://doi.org/10.1016/0140-6736(90)90002-m.
Article
CAS
PubMed
Google Scholar
Kanavaros P, Lescs MC, Brière J, Divine M, Galateau F, Joab I, et al. Nasal T-cell lymphoma: a clinicopathologic entity associated with peculiar phenotype and with Epstein-Barr virus. Blood. 1993;81:2688–95.
Article
CAS
Google Scholar
Medeiros LJ, Jaffe ES, Chen YY, Weiss LM. Localization of Epstein-Barr viral genomes in angiocentric immunoproliferative lesions. Am J Surg Pathol. 1992;16:439–47. https://doi.org/10.1097/00000478-199205000-00002.
Article
CAS
PubMed
Google Scholar
Weiss LM, Gaffey MJ, Chen YY, Frierson HF. Frequency of Epstein-Barr viral DNA in "Western" sinonasal and Waldeyer's ring non-Hodgkin's lymphomas. Am J Surg Pathol. 1992;16:156–62. https://doi.org/10.1097/00000478-199202000-00008.
Article
CAS
PubMed
Google Scholar
Xu JX, Hoshida Y, Yang WI, Inohara H, Kubo T, Kim GE, et al. Life-style and environmental factors in the development of nasal NK/T-cell lymphoma: a case-control study in East Asia. Int J Cancer. 2007;120:406–10. https://doi.org/10.1002/ijc.22313.
Article
CAS
PubMed
Google Scholar
Ayee R, Ofori MEO, Wright E, Quaye O. Epstein Barr Virus Associated Lymphomas and Epithelia Cancers in Humans. J Cancer. 2020;11:1737–50. https://doi.org/10.7150/jca.37282.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rudant J, Menegaux F, Leverger G, Baruchel A, Nelken B, Bertrand Y, et al. Household exposure to pesticides and risk of childhood hematopoietic malignancies: The ESCALE study (SFCE). Environ Health Perspect. 2007;115:1787–93. https://doi.org/10.1289/ehp.10596.
Article
PubMed
PubMed Central
Google Scholar
Latifovic L, Freeman LEB, Spinelli JJ, Pahwa M, Kachuri L, Blair A, et al. Pesticide use and risk of Hodgkin lymphoma: results from the North American Pooled Project (NAPP). Cancer Causes Control. 2020;31:583–99. https://doi.org/10.1007/s10552-020-01301-4.
Article
PubMed
PubMed Central
Google Scholar
Mavoungou S, Rios P, Pacquement H, Nolla M, Rigaud C, Simonin M, et al. Maternal exposure to pesticides and risk of childhood lymphoma in France: A pooled analysis of the ESCALE and ESTELLE studies (SFCE). Cancer Epidemiol. 2020;68:101797. https://doi.org/10.1016/j.canep.2020.101797.
Article
PubMed
Google Scholar
Bunch KJ, Kendall GM, Stiller CA, Vincent TJ, Murphy MFG. Case-control study of paternal occupational exposures and childhood lymphoma in Great Britain, 1962-2010. Br J Cancer. 2019;120:1153–61. https://doi.org/10.1038/s41416-019-0469-7.
Article
PubMed
PubMed Central
Google Scholar
Carozza SE, Li B, Wang Q, Horel S, Cooper S. Agricultural pesticides and risk of childhood cancers. Int J Hyg Environ Health. 2009;212:186–95. https://doi.org/10.1016/j.ijheh.2008.06.002.
Article
PubMed
PubMed Central
Google Scholar
Hardell K, Carlberg M, Hardell L, Björnfoth H, Ericson Jogsten I, Eriksson M, et al. Concentrations of organohalogen compounds and titres of antibodies to Epstein-Barr virus antigens and the risk for non-Hodgkin lymphoma. Oncol Rep. 2009;21:1567–76. https://doi.org/10.3892/or_00000389.
Article
CAS
PubMed
Google Scholar
Stancek D, Kosecká G, Oltman M, Keleová A, Jahnová E. Links between prolonged exposure to xenobiotics, increased incidence of hepatopathies, immunological disturbances and exacerbation of latent Epstein-Barr virus infections. Int J Immunopharmacol. 1995;17:321–8. https://doi.org/10.1016/0192-0561(95)00006-n.
Article
CAS
PubMed
Google Scholar
Rifkin E, LaKind J. Dioxin bioaccumulation: key to a sound risk assessment methodology. J Toxicol Environ Health. 1991;33:103–12. https://doi.org/10.1080/15287399109531509.
Article
CAS
PubMed
Google Scholar
USEPA. Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodiobenzo-p-dioxin (TCDD) and Related Compounds (September 2000 Draft). Part I: Estimating Exposure to dioxin-like compounds. 2000b, Volume 3: Properties, environmental levels and background exposures.
Fernandes AR, Falandysz J. Polybrominated dibenzo-p-dioxins and furans (PBDD/Fs): Contamination in food, humans and dietary exposure. Sci Total Environ. 2020;143191. https://doi.org/10.1016/j.scitotenv.2020.143191.
Bertazzi PA, Bernucci I, Brambilla G, Consonni D, Pesatori AC. The Seveso studies on early and long-term effects of dioxin exposure: a review. Environ Health Perspect. 1998;106(Suppl 2):625–33. https://doi.org/10.1289/ehp.98106625.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inoue H, Mishima K, Yamamoto-Yoshida S, Ushikoshi-Nakayama R, Nakagawa Y, Yamamoto K, et al. Aryl hydrocarbon receptor-mediated induction of EBV reactivation as a risk factor for Sjögren's syndrome. J Immunol. 2012;188:4654–62. https://doi.org/10.4049/jimmunol.1101575.
Article
CAS
PubMed
Google Scholar
Sorg O. AhR signalling and dioxin toxicity. Toxicol Lett. 2014;230:225–33. https://doi.org/10.1016/j.toxlet.2013.10.039.
Article
CAS
PubMed
Google Scholar
Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr. 2008;18:207–50. https://doi.org/10.1615/critreveukargeneexpr.v18.i3.20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gutiérrez-Vázquez C, Quintana FJ. Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity. 2018;48:19–33. https://doi.org/10.1016/j.immuni.2017.12.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quintana FJ, Sherr DH. Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol Rev. 2013;65:1148–61. https://doi.org/10.1124/pr.113.007823.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol. 2014;32:403–32. https://doi.org/10.1146/annurev-immunol-032713-120245.
Article
CAS
PubMed
Google Scholar
Kashuba EV, Gradin K, Isaguliants M, Szekely L, Poellinger L, Klein G, et al. Regulation of transactivation function of the aryl hydrocarbon receptor by the Epstein-Barr virus-encoded EBNA-3 protein. J Biol Chem. 2006;281:1215–23. https://doi.org/10.1074/jbc.M509036200.
Article
CAS
PubMed
Google Scholar
Hildesheim A, Levine PH. Etiology of nasopharyngeal carcinoma: a review. Epidemiol Rev. 1993;15:466–85. https://doi.org/10.1093/oxfordjournals.epirev.a036130.
Article
CAS
PubMed
Google Scholar
Poirier S, Ohshima H. de-Thé, G.; Hubert, A.; Bourgade, M.C.; Bartsch, H. Volatile nitrosamine levels in common foods from Tunisia, south China and Greenland, high-risk areas for nasopharyngeal carcinoma (NPC). Int J Cancer. 1987;39:293–6. https://doi.org/10.1002/ijc.2910390305.
Article
CAS
PubMed
Google Scholar
Zou XN, Lu SH, Liu B. Volatile N-nitrosamines and their precursors in Chinese salted fish--a possible etological factor for NPC in china. Int J Cancer. 1994;59:155–8. https://doi.org/10.1002/ijc.2910590202.
Article
CAS
PubMed
Google Scholar
Bouvier G, Poirier S, Shao YM, Malaveille C, Ohshima H, Polack A, et al. Epstein-Barr virus activators, mutagens and volatile nitrosamines in preserved food samples from high-risk areas for nasopharyngeal carcinoma. IARC Sci Publ. 1991:204–9.
Fang CY, Huang SY, Wu CC, Hsu HY, Chou SP, Tsai CH, et al. The synergistic effect of chemical carcinogens enhances Epstein-Barr virus reactivation and tumor progression of nasopharyngeal carcinoma cells. PLoS One. 2012;7:e44810. https://doi.org/10.1371/journal.pone.0044810.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng BJ, Jalbout M, Ayoub WB, Khyatti M, Dahmoul S, Ayad M, et al. Dietary risk factors for nasopharyngeal carcinoma in Maghrebian countries. Int J Cancer. 2007;121:1550–5. https://doi.org/10.1002/ijc.22813.
Article
CAS
PubMed
Google Scholar
Accardi R, Gruffat H, Sirand C, Fusil F, Gheit T, Hernandez-Vargas H, et al. The mycotoxin aflatoxin B1 stimulates Epstein-Barr virus-induced B-cell transformation in in vitro and in vivo experimental models. Carcinogenesis. 2015;36:1440–51. https://doi.org/10.1093/carcin/bgv142.
Article
CAS
PubMed
Google Scholar
Liu L, Yang J, Ji W, Wang C. Curcumin Inhibits Proliferation of Epstein-Barr Virus-Associated Human Nasopharyngeal Carcinoma Cells by Inhibiting EBV Nuclear Antigen 1 Expression. Biomed Res Int. 2019;2019:8592921. https://doi.org/10.1155/2019/8592921.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aedo-Aguilera V, Carrillo-Beltrán D, Calaf GM, Muñoz JP, Guerrero N, Osorio JC, et al. Curcumin decreases epithelial-mesenchymal transition by a Pirin-dependent mechanism in cervical cancer cells. Oncol Rep. 2019;42:2139–48. https://doi.org/10.3892/or.2019.7288.
Article
CAS
PubMed
Google Scholar
Gallardo M, Kemmerling U, Aguayo F, Bleak TC, Muñoz JP, Calaf GM. Curcumin rescues breast cells from epithelial-mesenchymal transition and invasion induced by anti-miR-34a. Int J Oncol. 2020;56:480–93. https://doi.org/10.3892/ijo.2019.4939.
Article
CAS
PubMed
Google Scholar
Wu CC, Fang CY, Cheng YJ, Hsu HY, Chou SP, Huang SY, et al. Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. J Biomed Sci. 2017;24:2. https://doi.org/10.1186/s12929-016-0313-9.
Article
CAS
PubMed
PubMed Central
Google Scholar