Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8:57–69.
Article
CAS
PubMed
Google Scholar
Yadav A, Collman RG. CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. Journal of Neuroimmune Pharmacolog. 2009;4:430–47.
Article
Google Scholar
Iqbal K. Grundke-Iqbal I Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J Cell Mol Med. 2008;12:38–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agostinho P, Cunha RA, Oliveira C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des. 2010;16:2766–78.
Article
CAS
PubMed
Google Scholar
Iadecola C. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol. 2010;120:287–96.
Article
PubMed
PubMed Central
Google Scholar
Cascella M, Muzio MR. Potential application of the Kampo medicine goshajinkigan for prevention of chemotherapy-induced peripheral neuropathy. J Integr Med. 2017;15(2):77–87.
Article
PubMed
Google Scholar
Essa MM, Mohammed A, Guillemin G. The Benefits of Natural Products for Neurodegenerative Diseases. 2016. ISBN:978-3-319-28381-4. doi:10.1007/978-3-319-28383-8.
Zhao HF, Li N, Wang Q, et al. Resveratrol decreases the insoluble Aβ1-42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats. Neuroscience. 2015;310:641–9.
Article
CAS
PubMed
Google Scholar
Cox KHM, Pipingas A, Scholey AB. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol. 2015;29:642–51.
Article
CAS
PubMed
Google Scholar
Saad MA, Abdel Salam RM, Kenawy SA, et al. Pinocembrin attenuates hippocampal inflammation, oxidative perturbations and apoptosis in a rat model of global cerebral ischemia reperfusion. Pharmacol Rep. 2015;67:115–22.
Article
CAS
PubMed
Google Scholar
Chen X, Gawryluk JW, Wagener JF, et al. Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer’s disease. J Neuroinflammation. 2008;5:12. doi:10.1186/1742-2094-5-12.
Article
PubMed
PubMed Central
Google Scholar
Steiner GZ, Yeung A, Liu JX, et al. The effect of Sailuotong (SLT) on neurocognitive and cardiovascular function in healthy adults: a randomised, double-blind, placebo controlled crossover pilot trial. BMC Complement Altern Med. 2015;16:15. doi:10.1186/s12906-016-0989-0.
Article
Google Scholar
Ahmed HH, Salem AM, Sabry GM, et al. Possible therapeutic uses of Salvia Triloba and Piper nigrum in Alzheimer’s disease-induced rats. J Med Food. 2013;16:437–46.
Article
PubMed
Google Scholar
Ou H-C, Song T-Y, Yeh Y-C, et al. EGCG protects against oxidized LDL-induced endothelial dysfunction by inhibiting LOX-1-mediated signalling. J Appl Physiol. 2010;108:1745–56.
Article
CAS
PubMed
Google Scholar
Xu H, Lui WT, Chu CY, et al. Anti-angiogenic effects of green tea catechin on an experimental endometriosis mouse model. Hum Reprod. 2009;24:608–18.
Article
CAS
PubMed
Google Scholar
Ahn HY, Xu Y, Davidge ST. Epigallocatechin-3-O-gallate inhibits TNFα-induced monocyte chemotactic protein-1 production from vascular endothelial cells. Life Sci. 2008;82:964–8.
Article
CAS
PubMed
Google Scholar
Lee H, Bae JH, Lee S-R. Protective effect of green tea polyphenol EGCG against neuronal damage and brain edema after unilateral cerebral ischemia in gerbils. J Neurosci Res. 2004;77:892–900.
Article
CAS
PubMed
Google Scholar
Singh M, Arseneault M, Sanderson T, et al. Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability,metabolism, and cellular and molecular mechanisms. J Agric Food Chem. 2008;56:4855–73.
Article
CAS
PubMed
Google Scholar
Lee YJ, Choi DY, Yun YP, et al. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. J Nutr Biochem. 2013;24:298–310.
Article
CAS
PubMed
Google Scholar
Lin CL, Chen TF, Chiu MJ, et al. Epigallocatechin gallate (EGCG) suppresses beta-amyloid-induced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK3 beta activation. Neurobiol Aging. 2009;30:81–92.
Article
CAS
PubMed
Google Scholar
Wang JY. Nucleo-cytoplasmic communication in apoptotic response to genotoxic and inflammatory stress. Cell Res. 2005;15:43–8.
Article
PubMed
Google Scholar
Sinha S, Lieberburg I. Cellular mechanisms of beta-amyloid production and secretion. Proc Natl Acad Sci U S A. 1999;96:11049–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng-Chung Wei J, Huang HC, Chen WJ, et al. Epigallocatechin gallate attenuates amyloid β-induced inflammation and neurotoxicity in EOC 13.31 microglia. Eur J Pharmacol. 2016;770:16–24.
Article
CAS
PubMed
Google Scholar
Rezai-Zadeh K, Shytle D, Sun N, et al. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci. 2005;25:8807–14.
Article
CAS
PubMed
Google Scholar
Ehrnhoefer DE, Bieschke J, Boeddrich A, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol. 2008;15:558–66.
Article
CAS
PubMed
Google Scholar
Bieschke J, Russ J, Friedrich RP, et al. EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc Natl Acad Sci U S A. 2010;107:7710–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chesser AS, Ganeshan V, Yang J, Johnson GV. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr Neurosci. 2016;19(1):21–31.
Article
CAS
PubMed
Google Scholar
Chang X, Rong C, Chen Y, et al. (−)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer’s disease model mice by upregulating neprilysin expression. Exp Cell Res. 2015;334(1):136–45.
Article
CAS
PubMed
Google Scholar
Zhang ZX, Li YB, Zhao RP. Epigallocatechin Gallate attenuates β-Amyloid generation and oxidative stress involvement of PPARγ in N2a/APP695 cells. Neurochem Res. 2017;42(2):468–80.
Article
CAS
PubMed
Google Scholar
Rezai-Zadeh K, Arendash GW, Hou H, Fernandez F, Jensen M, Runfeldt M, et al. Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res. 2008;1214:177–87.
Article
CAS
PubMed
Google Scholar
Li Q, Gordon M, Tan J, et al. Oral administration of green tea epigallocatechin-3-gallate (EGCG) reduces amyloid beta deposition in transgenic mouse model of Alzheimer’s disease. Exp Neurol. 2006;198:576.
Article
Google Scholar
Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm. 2010;389(1–2):207–12.
Article
CAS
PubMed
Google Scholar
Giunta B, Hou H, Zhu Y, Salemi J, Ruscin A, Shytle RD, et al. Fish oil enhances anti-amyloidogenic properties of green tea EGCG in Tg2576 mice. Neurosci Lett. 2010;471(3):134–8.
Article
CAS
PubMed
Google Scholar
Biasibetti R, Tramontina AC, Costa AP, Dutra MF, Quincozes-Santos A, Nardin P, et al. Green tea (−)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav Brain Res. 2013;236:186–93.
Article
CAS
PubMed
Google Scholar
He M, Liu MY, Wang S, Tang QS, Yao WF, Zhao HS, et al. Research on EGCG improving the degenerative changes of the brain in AD model mice induced with chemical drugs (article in Chinese). Zhong Yao Cai. 2012;35(10):1641–4.
CAS
PubMed
Google Scholar
de la Monte SM. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res. 2012;9:35–66.
Article
PubMed
PubMed Central
Google Scholar
Jia N, Han K, Kong JJ, Zhang XM, Sha S, Ren GR, et al. (−)-Epigallocatechin-3-gallate alleviates spatial memory impairment in APP/PS1 mice by restoring IRS-1 signaling defects in the hippocampus. Mol Cell Biochem. 2013;380(1–2):211–8.
Article
CAS
PubMed
Google Scholar
Ali B, Jamal QM, Shams S, et al. In silico analysis of green tea polyphenols as inhibitors of AChE and BChE enzymes in Alzheimer’s disease treatment. CNS Neurol Disord Drug Targets. 2016;15:624–8.
Article
CAS
PubMed
Google Scholar
Mähler A, Mandel S, Lorenz M, et al. Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases? EPMA J. 2013;4(1):5. doi:10.1186/1878-5085-4-5.
Article
PubMed
PubMed Central
Google Scholar
Bimonte S, Leongito M, Barbieri A, Del Vecchio V, Barbieri M, AlbinoV, et al. Inhibitory effect of (−)-epigallocatechin-3-gallate and bleomycin on human pancreatic cancer MiaPaca-2 cell growth. Infect Agent Cancer. 2015;10:22.
Article
PubMed
PubMed Central
Google Scholar
Nakagawa K, Miyazawa T. Absorption and distribution of tea catechin, (−)-epigallocatechin-3-gallate, in the rat. J Nutr Sci Vitaminol. 1997;43:679–84.
Article
CAS
PubMed
Google Scholar
Suganuma M, Okabe S, Oniyama M, Tada Y, Ito H, Fujiki H. Wide distribution of [3H](−)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis. 1998;19:1771–6.
Article
CAS
PubMed
Google Scholar
Wu L, Zhang QL, Zhang XY, Lv C, Li J, Yuan Y, et al. Pharmacokinetics and blood–brain barrier penetration of (+)-catechin and (−)-epicatechin in rats by microdialysis sampling coupled to high-performance liquid chromatography with chemiluminescence detection. J Agric Food Chem. 2012;60:9377–83.
Article
CAS
PubMed
Google Scholar
Mandel SA, Amit T, Weinreb O, Youdim MB. Understanding the broad-spectrum neuroprotective action profile of green tea polyphenols in aging and neurodegenerative diseases. J Alzheimers Dis. 2011;25:187–208.
CAS
PubMed
Google Scholar
Szarc vel Szic K, Declerck K, Vidaković M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics. 2015;7:33. doi:10.1186/s13148-015-0068-2.
Article
PubMed
Google Scholar
Kuriyama S, Hozawa A, Ohmori K, Shimazu T, Matsui T, Ebihara S, et al. Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya project 1. Am J Clin Nutr. 2006;83:355–61.
CAS
PubMed
Google Scholar
Molino S, Dossena M, Buonocore D, Ferrari F, Venturini L, Ricevuti G, et al. Polyphenols in dementia: from molecular basis to clinical trials. Life Sci. 2016;161:69–77.
Article
CAS
PubMed
Google Scholar
Einöther SJ, Martens VE. Acute effects of tea consumption on attention and mood. Am J Clin Nutr. 2013;98(6 Suppl):1700S–8S.
Article
PubMed
Google Scholar
Camfield DA, Stough C, Farrimond J, Scholey AB. Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: a systematic review and meta-analysis. Nutr Rev. 2014;72(8):507–22.
Article
PubMed
Google Scholar
Wightman EL, Haskell CF, Forster JS, Veasey RC, Kennedy DO. Epigallocatechin gallate, cerebral blood flow parameters, cognitive performance and mood in healthy humans: a double-blind, placebo-controlled, crossover investigation. Hum Psychopharmacol. 2012;27(2):177–86.
Article
CAS
PubMed
Google Scholar
Scholey A, Downey LA, Ciorciari J, Pipingas A, Nolidin K, Finn M, et al. Acute neurocognitive effects of epigallocatechin gallate (EGCG). Appetite. 2012;58:767–70.
Article
CAS
PubMed
Google Scholar
Ide K, Yamada H, Takuma N, Park M, Wakamiya N, Nakase J, et al. Green tea consumption affects cognitive dysfunction in the elderly: a pilot study. Nutrients. 2014;6(10):4032–42.
Article
PubMed
PubMed Central
Google Scholar
Friedemann P. Sunphenon EGCg (Epigallocatechin-Gallate) in the early stage of Alzheimer’s disease - NCT00951834 2009. Available at: https://clinicaltrials.gov/ct2/show/NCT00951834.