Morales-Sánchez A, Fuentes-Pananá EM. Human viruses and cancer. Viruses. 2014;6(10):4047–79.
Article
PubMed
PubMed Central
Google Scholar
Aga M, Bentz GL, Raffa S, Torrisi MR, Kondo S, Wakisaka N, et al. Exosomal HIF1α supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene. 2014;33(37):4613–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zur Hausen H, de Villiers E-M, editors. Cancer “causation” by infections—individual contributions and synergistic networks. In: Seminars in oncology. Elsevier; 2014.
Zamaraev A, Zhivotovsky B, Kopeina G. Viral infections: negative regulators of apoptosis and oncogenic factors. Biochem Mosc. 2020;85(10):1191–201.
Article
CAS
Google Scholar
Krump NA, You J. Molecular mechanisms of viral oncogenesis in humans. Nat Rev Microbiol. 2018;16(11):684–98.
Article
PubMed
PubMed Central
CAS
Google Scholar
Syn NL, Wang L, Chow EK-H, Lim CT, Goh B-C. Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol. 2017;35(7):665–76.
Article
PubMed
CAS
Google Scholar
Johnstone R, Bianchini A, Teng K. Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. 1989.
Rahmati S, Shojaei F, Shojaeian A, Rezakhani L, Dehkordi MB. An overview of current knowledge in biological functions and potential theragnostic applications of exosomes. Chem Phys Lipid. 2020;226:104836.
Article
CAS
Google Scholar
Yáñez-Mó M, Siljander PR-M, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4(1):27066.
Article
PubMed
Google Scholar
Yang J, Ding J, Guo X, Zhu X-Q, Zheng Y. Exosomes in virus-associated cancer. Cancer Lett. 2018;438:44–51.
Article
PubMed
Google Scholar
Donoso-Quezada J, Ayala-Mar S, González-Valdez J. State-of-the-art exosome loading and functionalization techniques for enhanced therapeutics: a review. Crit Rev Biotechnol. 2020;40(6):804–20.
Article
PubMed
CAS
Google Scholar
Nam GH, Choi Y, Kim GB, Kim S, Kim SA, Kim IS. Emerging prospects of exosomes for cancer treatment: from conventional therapy to immunotherapy. Adv Mater. 2020;32(51):2002440.
Article
CAS
Google Scholar
Meckes DG, Shair KH, Marquitz AR, Kung C-P, Edwards RH, Raab-Traub N. Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci. 2010;107(47):20370–5.
Article
PubMed
PubMed Central
Google Scholar
Zhang L, Ju Y, Chen S, Ren L. Recent progress on exosomes in RNA virus infection. Viruses. 2021;13(2):256.
Article
PubMed
PubMed Central
CAS
Google Scholar
Anderson MR, Kashanchi F, Jacobson S. Exosomes in viral disease. Neurotherapeutics. 2016;13(3):535–46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meckes DG Jr. Exosomal communication goes viral. J Virol. 2015;89(10):5200–3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nanbo A, Kawanishi E, Yoshida R, Yoshiyama H. Exosomes derived from Epstein–Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J Virol. 2013;87(18):10334–47.
Article
PubMed
PubMed Central
CAS
Google Scholar
Choi H, Lee H, Kim SR, Gho YS, Lee SK. Epstein–Barr virus-encoded microRNA BART15-3p promotes cell apoptosis partially by targeting BRUCE. J Virol. 2013;87(14):8135–44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci. 2010;107(14):6328–33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kannan A, Hertweck KL, Philley JV, Wells RB, Dasgupta S. Genetic mutation and exosome signature of human papilloma virus associated oropharyngeal cancer. Sci Rep. 2017;7(1):1–10.
Article
Google Scholar
Kapoor NR, Chadha R, Kumar S, Choedon T, Reddy VS, Kumar V. The HBx gene of hepatitis B virus can influence hepatic microenvironment via exosomes by transferring its mRNA and protein. Virus Res. 2017;240:166–74.
Article
PubMed
CAS
Google Scholar
Zhao X, Wu Y, Duan J, Ma Y, Shen Z, Wei L, et al. Quantitative proteomic analysis of exosome protein content changes induced by hepatitis B virus in Huh-7 cells using SILAC labeling and LC–MS/MS. J Proteome Res. 2014;13(12):5391–402.
Article
PubMed
CAS
Google Scholar
Yang X, Li H, Sun H, Fan H, Hu Y, Liu M, et al. Hepatitis B virus-encoded microRNA controls viral replication. J Virol. 2017;91(10):e01919-e2016.
Article
PubMed
PubMed Central
Google Scholar
Mahmoudvand S, Shokri S, Mirzaei H, Makvandi M, Teimoori A, Neisi N, et al. Study on the prevalence of occult hepatitis B virus infection in patients undergoing hemodialysis. Acta Med Iran. 2020;58(4):177–82.
Google Scholar
Shokri S, Mahmoudvand S, Taherkhani R, Farshadpour F, Jalalian FA. Complexity on modulation of NF-κB pathways by hepatitis B and C: a double-edged sword in hepatocarcinogenesis. J Cell Physiol. 2019;234(9):14734–42.
Article
CAS
Google Scholar
Lavorgna A, Matsuoka M, Harhaj EW. A critical role for IL-17RB signaling in HTLV-1 tax-induced NF-κB activation and T-cell transformation. Retrovirology. 2015;12(1):1.
Google Scholar
Yonezawa A, Grant R, Shimakawa Y. Including the voice of people living with viral hepatitis: lessons learned from Japan to accelerate progress towards global hepatitis elimination. Trop Med Health. 2021;49(1):79.
Article
PubMed
PubMed Central
Google Scholar
D’Souza S, Lau KC, Coffin CS, Patel TR. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World J Gastroenterol. 2020;26(38):5759–83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
Article
PubMed
Google Scholar
Jia X, Chen J, Megger DA, Zhang X, Kozlowski M, Zhang L, et al. Label-free proteomic analysis of exosomes derived from inducible hepatitis B virus-replicating HepAD38 cell line. Mol Cell Proteomics. 2017;16(4):S144–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Manandhar S, Kothandan VK, Oh J, Yoo SH, Hwang J, Hwang SR. A pharmaceutical investigation into exosomes. J Pharm Investig. 2018;48(6):617–26.
Article
CAS
Google Scholar
Lee Y-R, Wu S-Y, Chen R-Y, Lin Y-S, Yeh T-M, Liu H-S. Regulation of autophagy, glucose uptake, and glycolysis under dengue virus infection. Kaohsiung J Med Sci. 2020;36(11):911–9.
Article
PubMed
CAS
Google Scholar
Wang J, Cao D, Yang J. Exosomes in hepatitis B virus transmission and related immune response. Tohoku J Exp Med. 2020;252(4):309–20.
Article
PubMed
CAS
Google Scholar
Pezzuto F, Buonaguro L, Buonaguro FM, Tornesello ML. The role of circulating free DNA and microRNA in non-invasive diagnosis of HBV- and HCV-related hepatocellular carcinoma. Int J Mol Sci. 2018;19(4):1007.
Article
PubMed
PubMed Central
Google Scholar
Yang Y, Han Q, Hou Z, Zhang C, Tian Z, Zhang J. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction. Cell Mol Immunol. 2017;14(5):465–75.
Article
PubMed
CAS
Google Scholar
Ding J, Wang J, Chen J. Exosomes as therapeutic vehicles in liver diseases. Ann Transl Med. 2021;9(8):735.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sung PS, Jang JW. Natural killer cell dysfunction in hepatocellular carcinoma: pathogenesis and clinical implications. Int J Mol Sci. 2018;19(11):3648.
Article
PubMed
PubMed Central
Google Scholar
Shi Y, Du L, Lv D, Li Y, Zhang Z, Huang X, et al. Emerging role and therapeutic application of exosome in hepatitis virus infection and associated diseases. J Gastroenterol. 2021;56(4):336–49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li JH, Ma WJ, Wang GG, Jiang X, Chen X, Wu L, et al. Clinicopathologic significance and prognostic value of programmed cell death ligand 1 (PD-L1) in patients with hepatocellular carcinoma: a meta-analysis. Front Immunol. 2018;9:2077.
Article
PubMed
PubMed Central
Google Scholar
Liu C-Q, Xu J, Zhou Z-G, Jin L-L, Yu X-J, Xiao G, et al. Expression patterns of programmed death ligand 1 correlate with different microenvironments and patient prognosis in hepatocellular carcinoma. Br J Cancer. 2018;119(1):80–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ashraf Malik M, Ishtiyaq Ali Mirza J, Umar M, Manzoor S. CD81(+) exosomes play a pivotal role in the establishment of hepatitis C persistent infection and contribute toward the progression of hepatocellular carcinoma. Viral Immunol. 2019;32(10):453–62.
Article
PubMed
Google Scholar
Wang H, Rao B, Lou J, Li J, Liu Z, Li A, et al. The function of the HGF/c-Met axis in hepatocellular carcinoma. Front Cell Dev Biol. 2020;8:55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barreiros AP, Sprinzl M, Rosset S, Höhler T, Otto G, Theobald M, et al. EGF and HGF levels are increased during active HBV infection and enhance survival signaling through extracellular matrix interactions in primary human hepatocytes. Int J Cancer. 2009;124(1):120–9.
Article
PubMed
CAS
Google Scholar
Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog. 2014;10(10):e1004424.
Article
PubMed
PubMed Central
Google Scholar
Ramayanti O, Verkuijlen SA, Novianti P, Scheepbouwer C, Misovic B, Koppers-Lalic D, et al. Vesicle-bound EBV-BART13-3p miRNA in circulation distinguishes nasopharyngeal from other head and neck cancer and asymptomatic EBV-infections. Int J Cancer. 2019;144(10):2555–66.
Article
PubMed
CAS
Google Scholar
Huang J, Qin Y, Yang C, Wan C, Dai X, Sun Y, et al. Downregulation of ABI2 expression by EBV-miR-BART13-3p induces epithelial-mesenchymal transition of nasopharyngeal carcinoma cells through upregulation of c-JUN/SLUG signaling. Aging (Albany NY). 2020;12(1):340.
Article
PubMed
CAS
Google Scholar
Iuliano M, Mangino G, Chiantore MV, Zangrillo MS, Accardi R, Tommasino M, et al. Human Papillomavirus E6 and E7 oncoproteins affect the cell microenvironment by classical secretion and extracellular vesicles delivery of inflammatory mediators. Cytokine. 2018;106:182–9.
Article
PubMed
CAS
Google Scholar
Honegger A, Leitz J, Bulkescher J, Hoppe-Seyler K, Hoppe-Seyler F. Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. Int J Cancer. 2013;133(7):1631–42.
Article
PubMed
CAS
Google Scholar
Al Sharif S, Pinto DO, Mensah GA, Dehbandi F, Khatkar P, Kim Y, et al. Extracellular vesicles in HTLV-1 communication: the story of an invisible messenger. Viruses. 2020;12(12):1422.
Article
PubMed
PubMed Central
CAS
Google Scholar
Narayanan A, Jaworski E, Van Duyne R, Iordanskiy S, Guendel I, Das R, et al. Exosomes derived from HTLV-1 infected cells contain the viral protein Tax. Retrovirology. 2014;11(1):1.
Google Scholar
Chugh PE, Sin S-H, Ozgur S, Henry DH, Menezes P, Griffith J, et al. Systemically circulating viral and tumor-derived microRNAs in KSHV-associated malignancies. PLoS Pathog. 2013;9(7):e1003484.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fan K, Spassova I, Gravemeyer J, Ritter C, Horny K, Lange A, et al. Merkel cell carcinoma-derived exosome-shuttle miR-375 induces fibroblast polarization by inhibition of RBPJ and p53. Oncogene. 2021;40(5):980–96.
Article
PubMed
CAS
Google Scholar
Yuan X, Wu H, Xu H, Xiong H, Chu Q, Yu S, et al. Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett. 2015;369(1):20–7.
Article
PubMed
CAS
Google Scholar
Meng L-B, Zhang Y-M, Shan M-J, Qiu Y, Zhang T-J, Gong T. Pivotal micro factors associated with endothelial cells. Chin Med J (Engl). 2019;132(16):1965–73.
Article
PubMed
CAS
Google Scholar
He R, Wang Z, Shi W, Yu L, Xia H, Huang Z, et al. Exosomes in hepatocellular carcinoma microenvironment and their potential clinical application value. Biomed Pharmacother. 2021;138:111529.
Article
PubMed
CAS
Google Scholar
Kongkavitoon P, Tangkijvanich P, Hirankarn N, Palaga T. Hepatitis B virus HBx activates notch signaling via delta-like 4/Notch1 in hepatocellular carcinoma. PLoS ONE. 2016;11(1):e0146696.
Article
PubMed
PubMed Central
Google Scholar
Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of angiopoietin-2 in vascular physiology and pathophysiology. Cells. 2019;8(5):471.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie J-y, Wei J-x, Lv L-h, Han Q-f, Yang W-b, Li G-l, et al. Angiopoietin-2 induces angiogenesis via exosomes in human hepatocellular carcinoma. Cell Commun Signal. 2020;18(1):46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Soheilifar MH, Grusch M, Neghab HK, Amini R, Maadi H, Saidijam M, et al. Angioregulatory microRNAs in colorectal cancer. Cancers (Basel). 2019;12(1):71.
Article
PubMed
Google Scholar
Sanz-Cameno P, Martín-Vílchez S, Lara-Pezzi E, Borque MJ, Salmerón J, Muñoz de Rueda P, et al. Hepatitis B virus promotes angiopoietin-2 expression in liver tissue: role of HBV x protein. Am J Pathol. 2006;169(4):1215–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang X-Y, Huang Z-L, Huang J, Xu B, Huang X-Y, Xu Y-H, et al. Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res. 2020;39(1):20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang XY, Huang ZL, Zhang PB, Huang XY, Huang J, Wang HC, et al. CircRNA-100338 is associated with mTOR signaling pathway and poor prognosis in hepatocellular carcinoma. Front Oncol. 2019;9:392.
Article
PubMed
PubMed Central
Google Scholar
Huang X-Y, Huang Z-L, Xu Y-H, Zheng Q, Chen Z, Song W, et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-100338/miR-141-3p pathway in hepatitis B-related hepatocellular carcinoma. Sci Rep. 2017;7(1):5428.
Article
PubMed
PubMed Central
Google Scholar
Liao R, Liu L, Zhou J, Wei X, Huang P. Current molecular biology and therapeutic strategy status and prospects for circRNAs in HBV-associated hepatocellular carcinoma. Fron Oncol. 2021;11:2500.
Google Scholar
Chen R, Xu X, Tao Y, Qian Z, Yu Y. Exosomes in hepatocellular carcinoma: a new horizon. Cell Commun Signal. 2019;17(1):1.
Article
PubMed
PubMed Central
Google Scholar
Kouwaki T, Fukushima Y, Daito T, Sanada T, Yamamoto N, Mifsud EJ, et al. Extracellular vesicles including exosomes regulate innate immune responses to hepatitis B virus infection. Front Immunol. 2016;7:335.
Article
PubMed
PubMed Central
Google Scholar
Wang H, Hou L, Li A, Duan Y, Gao H, Song X. Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma. Biomed Res Int. 2014;2014:864894.
PubMed
PubMed Central
Google Scholar
Gao H, Liu C. miR-429 represses cell proliferation and induces apoptosis in HBV-related HCC. Biomed Pharmacother. 2014;68(8):943–9.
Article
PubMed
CAS
Google Scholar
Zhang Y, Xi H, Nie X, Zhang P, Lan N, Lu Y, et al. Assessment of miR-212 and other biomarkers in the diagnosis and treatment of HBV-infection-related liver diseases. Curr Drug Metab. 2019;20(10):785–98.
Article
PubMed
CAS
Google Scholar
Morishita A, Fujita K, Iwama H, Chiyo T, Fujihara S, Oura K, et al. Role of microRNA-210-3p in hepatitis B virus-related hepatocellular carcinoma. Am J Physiol Gastrointest Liver Physiol. 2020;318(3):G401–9.
Article
PubMed
CAS
Google Scholar
Sohn W, Kim J, Kang SH, Yang SR, Cho J-Y, Cho HC, et al. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp Mol Med. 2015;47(9):e184.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ahmed I, Akram Z, Iqbal HMN, Munn AL. The regulation of endosomal sorting complex required for transport and accessory proteins in multivesicular body sorting and enveloped viral budding—an overview. Int J Biol Macromol. 2019;127:1–11.
Article
PubMed
CAS
Google Scholar
Wei JX, Lv LH, Wan YL, Cao Y, Li GL, Lin HM, et al. Vps4A functions as a tumor suppressor by regulating the secretion and uptake of exosomal microRNAs in human hepatoma cells. Hepatology (Baltimore, MD). 2015;61(4):1284–94.
Article
PubMed
CAS
Google Scholar
Han Q, Lv L, Wei J, Lei X, Lin H, Li G, et al. Vps4A mediates the localization and exosome release of β-catenin to inhibit epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett. 2019;457:47–59.
Article
PubMed
CAS
Google Scholar
Zeyen L, Döring T, Prange R. Hepatitis B virus exploits ERGIC-53 in conjunction with COPII to exit cells. Cells. 2020;9(8):1889.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kian Chua P, Lin MH, Shih C. Potent inhibition of human hepatitis B virus replication by a host factor Vps4. Virology. 2006;354(1):1–6.
Article
PubMed
CAS
Google Scholar
Chou S-F, Tsai M-L, Huang J-Y, Chang Y-S, Shih C. The dual role of an ESCRT-0 component HGS in HBV transcription and naked capsid secretion. PLoS Pathog. 2015;11(10):e1005123.
Article
PubMed
PubMed Central
Google Scholar
Mahmoudvand S, Shokri S, Taherkhani R, Farshadpour F. Hepatitis C virus core protein modulates several signaling pathways involved in hepatocellular carcinoma. World J Gastroenterol. 2019;25(1):42–58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Blach S, Zeuzem S, Manns M, Altraif I, Duberg A-S, Muljono DH, et al. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol Hepatol. 2017;2(3):161–76.
Article
Google Scholar
. WHO Hepatitis C, WHO fact sheet Updated 27 July 2021 Available at: https://www.whoint/news-room/fact-sheets/detail/hepatitis-c.
Saad MH, Badierah R, Redwan EM, El-Fakharany EM. A comprehensive insight into the role of exosomes in viral infection: dual faces bearing different functions. Pharmaceutics. 2021;13(9):1405.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang H, Lu Z, Zhao X. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer. J Hematol Oncol. 2019;12(1):133.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou H, Yan Z-H, Yuan Y, Xing C, Jiang N. The role of exosomes in viral hepatitis and its associated liver diseases. Front Med (Lausanne). 2021;8:782485.
Article
PubMed
Google Scholar
Ramakrishnaiah V, Thumann C, Fofana I, Habersetzer F, Pan Q, de Ruiter PE, et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc Natl Acad Sci U S A. 2013;110(32):13109–13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cosset FL, Dreux M. HCV transmission by hepatic exosomes establishes a productive infection. J Hepatol. 2014;60(3):674–5.
Article
PubMed
Google Scholar
Huang A-H, Wang H-B, Wu Z-F, Wang Y-H, Hu B, Jiang Z-N, et al. Infiltrating regulatory T cells promote invasiveness of liver cancer cells via inducing epithelial-mesenchymal transition. Transl Cancer Res. 2019;8(6):2405–15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou H, Yan Z-H, Yuan Y, Xing C, Jiang N. The role of exosomes in viral hepatitis and its associated liver diseases. Front Med. 2021;8:2313.
Article
Google Scholar
Chen C, Gu C, Ren Q, Ding F, Pan Q, Niu Y, et al. lncRNA HEIH, an indicator of high malignancy and poor prognosis, functions as an oncogene in breast cancer. Mol Med Rep. 2020;22(4):2869–77.
PubMed
PubMed Central
CAS
Google Scholar
Zhang C, Yang X, Qi Q, Gao Y, Wei Q, Han S. lncRNA-HEIH in serum and exosomes as a potential biomarker in the HCV-related hepatocellular carcinoma. Cancer Biomark Sect A Dis Mark. 2018;21(3):651–9.
Article
CAS
Google Scholar
Lin Y, Yang X, Liu W, Li B, Yin W, Shi Y, et al. Chemerin has a protective role in hepatocellular carcinoma by inhibiting the expression of IL-6 and GM-CSF and MDSC accumulation. Oncogene. 2017;36(25):3599–608.
Article
PubMed
CAS
Google Scholar
Tian X, Ma J, Wang T, Tian J, Zheng Y, Peng R, et al. Long non-coding RNA RUNXOR accelerates MDSC-mediated immunosuppression in lung cancer. BMC Cancer. 2018;18(1):660.
Article
PubMed
PubMed Central
Google Scholar
Thakuri BKC, Zhang J, Zhao J, Nguyen LN, Nguyen LN, Schank M, et al. HCV-associated exosomes upregulate RUNXOR and RUNX1 expressions to promote MDSC expansion and suppressive functions through STAT3–miR124 axis. Cells. 2020;9(12):2715.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smatti MK, Al-Sadeq DW, Ali NH, Pintus G, Abou-Saleh H, Nasrallah GK. Epstein–Barr virus epidemiology, serology, and genetic variability of LMP-1 oncogene among healthy population: an update. Front Oncol. 2018;8:211.
Article
PubMed
PubMed Central
Google Scholar
Khan G, Fitzmaurice C, Naghavi M, Ahmed LA. Global and regional incidence, mortality and disability-adjusted life-years for Epstein–Barr virus-attributable malignancies, 1990–2017. BMJ Open. 2020;10(8):e037505.
Article
PubMed
PubMed Central
Google Scholar
Santpere G, Darre F, Blanco S, Alcami A, Villoslada P, Mar Alba M, et al. Genome-wide analysis of wild-type Epstein–Barr virus genomes derived from healthy individuals of the 1000 Genomes Project. Genome Biol Evol. 2014;6(4):846–60.
Article
PubMed
PubMed Central
Google Scholar
Shannon-Lowe C, Rickinson A. The global landscape of EBV-associated tumors. Front Oncol. 2019;9:713.
Article
PubMed
PubMed Central
Google Scholar
Liu Y, Lu Z, Huang H. Genome-wide profiling of Epstein–Barr Virus (EBV) isolated from EBV-related malignancies. Epstein-Barr Virus. IntechOpen; 2020.
Schwab A, Meyering SS, Lepene B, Iordanskiy S, van Hoek ML, Hakami RM, et al. Extracellular vesicles from infected cells: potential for direct pathogenesis. Front Microbiol. 2015;6:1132.
Article
PubMed
PubMed Central
Google Scholar
Keryer-Bibens C, Pioche-Durieu C, Villemant C, Souquère S, Nishi N, Hirashima M, et al. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral latent membrane protein 1 and the immunomodulatory protein galectin 9. BMC Cancer. 2006;6(1):1–8.
Article
Google Scholar
Mrizak D, Martin N, Barjon C, Jimenez-Pailhes A-S, Mustapha R, Niki T, et al. Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. J Natl Cancer Inst. 2015;107(1):dju363.
Article
PubMed
Google Scholar
Iwakiri D. Epstein–Barr virus-encoded RNAs: key molecules in viral pathogenesis. Cancers (Basel). 2014;6(3):1615–30.
Article
PubMed
Google Scholar
Canitano A, Venturi G, Borghi M, Ammendolia MG, Fais S. Exosomes released in vitro from Epstein–Barr virus (EBV)-infected cells contain EBV-encoded latent phase mRNAs. Cancer Lett. 2013;337(2):193–9.
Article
PubMed
CAS
Google Scholar
Yang C, Robbins PD. The roles of tumor-derived exosomes in cancer pathogenesis. Clin Dev Immunol. 2011;2011.
Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol. 2015;8(1):1–13.
Article
PubMed Central
Google Scholar
Ahmed W, Philip PS, Tariq S, Khan G. Epstein-Barr virus-encoded small RNAs (EBERs) are present in fractions related to exosomes released by EBV-transformed cells. PLoS ONE. 2014;9(6):e99163.
Article
PubMed
PubMed Central
Google Scholar
Kobayashi E, Aga M, Kondo S, Whitehurst C, Yoshizaki T, Pagano J, et al. C-terminal farnesylation of UCH-L1 plays a role in transport of Epstein–Barr virus primary oncoprotein LMP1 to exosomes. Msphere. 2018;3(1):e00030-e118.
Article
PubMed
PubMed Central
Google Scholar
Nkosi D, Sun L, Duke LC, Patel N, Surapaneni SK, Singh M, et al. Epstein-Barr virus LMP1 promotes syntenin-1-and Hrs-induced extracellular vesicle formation for its own secretion to increase cell proliferation and migration. MBio. 2020;11(3):e00589-e620.
Article
PubMed
PubMed Central
Google Scholar
Middeldorp J, Pegtel D, editors. Multiple roles of LMP1 in Epstein–Barr virus induced immune escape. In: Seminars in cancer biology. Elsevier; 2008.
Lo AK-F, Dawson CW, Lung HL, Wong K-L, Young LS. The role of EBV-encoded LMP1 in the NPC tumour microenvironment: from function to therapy. Front Oncol. 2021;11:262.
Article
Google Scholar
Fang W, Hong S, Chen N, He X, Zhan J, Qin T, et al. PD-L1 is remarkably over-expressed in EBV-associated pulmonary lymphoepithelioma-like carcinoma and related to poor disease-free survival. Oncotarget. 2015;6(32):33019.
Article
PubMed
PubMed Central
Google Scholar
Dukers DF, Meij P, Vervoort MB, Vos W, Scheper RJ, Meijer CJ, et al. Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. J Immunol. 2000;165(2):663–70.
Article
PubMed
CAS
Google Scholar
Flanagan J, Middeldorp J, Sculley T. Localization of the Epstein–Barr virus protein LMP 1 to exosomes. J Gen Virol. 2003;84(7):1871–9.
Article
PubMed
CAS
Google Scholar
Ceccarelli S, Visco V, Raffa S, Wakisaka N, Pagano JS, Torrisi MR. Epstein-Barr virus latent membrane protein 1 promotes concentration in multivesicular bodies of fibroblast growth factor 2 and its release through exosomes. Int J Cancer. 2007;121(7):1494–506.
Article
PubMed
CAS
Google Scholar
Lu Y, Liu B, Liu Y, Yu X, Cheng G. Dual effects of active ERK in cancer: a potential target for enhancing radiosensitivity. Oncol Lett. 2020;20(2):993–1000.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep. 2020;47(6):4587–629.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sasaki T, Hiroki K, Yamashita Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. BioMed Res Int. 2013;2013.
Gutzeit C, Nagy N, Gentile M, Lyberg K, Gumz J, Vallhov H, et al. Exosomes derived from Burkitt’s lymphoma cell lines induce proliferation, differentiation, and class-switch recombination in B cells. J Immunol. 2014;192(12):5852–62.
Article
PubMed
CAS
Google Scholar
Ikeda M, Longnecker R. Cholesterol is critical for Epstein-Barr virus latent membrane protein 2A trafficking and protein stability. Virology. 2007;360(2):461–8.
Article
PubMed
CAS
Google Scholar
Dawson CW, Port RJ, Young LS, editors. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). In: Seminars in cancer biology. Elsevier; 2012:.
Ahmed W, Tariq S, Khan G. Tracking EBV-encoded RNAs (EBERs) from the nucleus to the excreted exosomes of B-lymphocytes. Sci Rep. 2018;8(1):1–11.
Article
Google Scholar
Baglio SR, van Eijndhoven MA, Koppers-Lalic D, Berenguer J, Lougheed SM, Gibbs S, et al. Sensing of latent EBV infection through exosomal transfer of 5′ pppRNA. Proc Natl Acad Sci. 2016;113(5):E587–96.
Article
PubMed
PubMed Central
CAS
Google Scholar
Burassakarn A, Srisathaporn S, Pientong C, Wongjampa W, Vatanasapt P, Patarapadungkit N, et al. Exosomes-carrying Epstein–Barr virus-encoded small RNA-1 induces indoleamine 2, 3-dioxygenase expression in tumor-infiltrating macrophages of oral squamous-cell carcinomas and suppresses T-cell activity by activating RIG-I/IL-6/TNF-α pathway. Oral Oncol. 2021;117:105279.
Article
PubMed
CAS
Google Scholar
De Re V, Caggiari L, De Zorzi M, Fanotto V, Miolo G, Puglisi F, et al. Epstein–Barr virus BART microRNAs in EBV-associated Hodgkin lymphoma and gastric cancer. Infect Agent Cancer. 2020;15:42.
Article
PubMed
PubMed Central
Google Scholar
Lei T, Yuen KS, Xu R, Tsao SW, Chen H, Li M, et al. Targeting of DICE1 tumor suppressor by Epstein–Barr virus-encoded miR-BART3* microRNA in nasopharyngeal carcinoma. Int J Cancer. 2013;133(1):79–87.
Article
PubMed
CAS
Google Scholar
Zhao M, Nanbo A, Sun L, Lin Z. Extracellular vesicles in Epstein–Barr virus’ life cycle and pathogenesis. Microorganisms. 2019;7(2):48.
Article
PubMed
PubMed Central
Google Scholar
Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health. 2020;8(2):e191–203.
Article
PubMed
Google Scholar
Tomaić V. Functional roles of E6 and E7 oncoproteins in HPV-induced malignancies at diverse anatomical sites. Cancers (Basel). 2016;8(10):95.
Article
PubMed
Google Scholar
Honegger A, Schilling D, Sültmann H, Hoppe-Seyler K, Hoppe-Seyler F. Identification of E6/E7-dependent MicroRNAs in HPV-positive cancer cells. In: MicroRNA and Cancer. Springer; 2018. pp. 119–134.
Ludwig S, Sharma P, Theodoraki M-N, Pietrowska M, Yerneni SS, Lang S, et al. Molecular and functional profiles of exosomes from HPV (+) and HPV (−) head and neck cancer cell lines. Front Oncol. 2018;8:445.
Article
PubMed
PubMed Central
Google Scholar
Khan S, Jutzy JM, Aspe JR, McGregor DW, Neidigh JW, Wall NR. Survivin is released from cancer cells via exosomes. Apoptosis. 2011;16(1):1–12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sültmann H, et al. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog. 2015;11(3):e1004712.
Article
PubMed
PubMed Central
Google Scholar
Harden ME, Munger K. Human papillomavirus 16 E6 and E7 oncoprotein expression alters microRNA expression in extracellular vesicles. Virology. 2017;508:63–9.
Article
PubMed
CAS
Google Scholar
Chiantore MV, Mangino G, Iuliano M, Zangrillo MS, De Lillis I, Vaccari G, et al. Human papillomavirus E6 and E7 oncoproteins affect the expression of cancer-related microRNAs: additional evidence in HPV-induced tumorigenesis. J Cancer Res Clin Oncol. 2016;142(8):1751–63.
Article
PubMed
CAS
Google Scholar
Liu J, Sun H, Wang X, Yu Q, Li S, Yu X, et al. Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int J Mol Sci. 2014;15(1):758–73.
Article
PubMed
PubMed Central
Google Scholar
Wu Y, Wang X, Meng L, Li W, Li C, Li P, et al. Changes of miRNA expression profiles from cervical-vaginal fluid-derived exosomes in response to HPV16 infection. BioMed Res Int. 2020;2020.
Xu J, Wen J, Li S, Shen X, You T, Huang Y, et al. Immune-related nine-microRNA signature for predicting the prognosis of gastric cancer. Front Genet. 2021;12.
Tong F, Andress A, Tang G, Liu P, Wang X. Comprehensive profiling of extracellular RNA in HPV-induced cancers using an improved pipeline for small RNA-seq analysis. Sci Rep. 2020;10(1):1–13.
Article
Google Scholar
Rana AA, Lucs AV, DeVoti J, Blanc L, Papoin J, Wu R, et al. Poly (I: C) induces controlled release of IL-36γ from keratinocytes in the absence of cell death. Immunol Res. 2015;63(1):228–35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang X, Zhao X, Feng C, Weinstein A, Xia R, Wen W, et al. IL-36γ transforms the tumor microenvironment and promotes type 1 lymphocyte-mediated antitumor immune responses. Cancer Cell. 2015;28(3):296–306.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang J, Liu SC, Luo XH, Tao GX, Guan M, Yuan H, et al. Exosomal Long noncoding RNA s are differentially expressed in the Cervicovaginal lavage samples of cervical cancer patients. J Clin Lab Anal. 2016;30(6):1116–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rathinasamy B, Velmurugan BK. Role of lncRNAs in the cancer development and progression and their regulation by various phytochemicals. Biomed Pharmacother. 2018;102:242–8.
Article
PubMed
CAS
Google Scholar
Lin Y, Zhang C, Xiang P, Shen J, Sun W, Yu H. Exosomes derived from HeLa cells break down vascular integrity by triggering endoplasmic reticulum stress in endothelial cells. J Extracell Vesicles. 2020;9(1):1722385.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liang L-J, Yang Y, Wei W-F, Wu X-G, Yan R-M, Zhou C-F, et al. Tumor-secreted exosomal Wnt2B activates fibroblasts to promote cervical cancer progression. Oncogenesis. 2021;10(3):1–12.
Article
Google Scholar
Ren T, Cheng H. Differential transforming activity of the retroviral Tax oncoproteins in human T lymphocytes. Front Microbiol. 2013;4:287.
Article
PubMed
PubMed Central
Google Scholar
Nozuma S, Jacobson S. Neuroimmunology of human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis. Front Microbiol. 2019;10:885.
Article
PubMed
PubMed Central
Google Scholar
Zhang L-L, Wei J-Y, Wang L, Huang S-L, Chen J-L. Human T-cell lymphotropic virus type 1 and its oncogenesis. Acta Pharmacol Sin. 2017;38(8):1093–103.
Article
PubMed
PubMed Central
CAS
Google Scholar
Currer R, Van Duyne R, Jaworski E, Guendel I, Sampey G, Das R, et al. HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol. 2012;3:406.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M, et al. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem. 2014;289(32):22284–305.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mohanty S, Harhaj EW. Mechanisms of oncogenesis by HTLV-1 Tax. Pathogens. 2020;9(7):543.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kumar A, Kodidela S, Tadrous E, Cory TJ, Walker CM, Smith AM, et al. Extracellular vesicles in viral replication and pathogenesis and their potential role in therapeutic intervention. Viruses. 2020;12(8):887.
Article
PubMed
PubMed Central
CAS
Google Scholar
Welle S. Endocrine, paracrine, and autocrine regulation. In: Human Protein Metabolism. Springer; 1999. pp. 124–160.
El-Saghir J, Nassar F, Tawil N, El-Sabban M. ATL-derived exosomes modulate mesenchymal stem cells: potential role in leukemia progression. Retrovirology. 2016;13(1):1–13.
Article
Google Scholar
Pinto DO, DeMarino C, Pleet ML, Cowen M, Branscome H, Al Sharif S, et al. HTLV-1 extracellular vesicles promote cell-to-cell contact. Front Microbiol. 2019;10:2147.
Article
PubMed
PubMed Central
Google Scholar
Wen KW, Damania B. Kaposi sarcoma-associated herpesvirus (KSHV): molecular biology and oncogenesis. Cancer Lett. 2010;289(2):140–50.
Article
PubMed
CAS
Google Scholar
Purushothaman P, Uppal T, Sarkar R, Verma SC. KSHV-mediated angiogenesis in tumor progression. Viruses. 2016;8(7):198.
Article
PubMed
PubMed Central
Google Scholar
Yogev O, Lagos D, Enver T, Boshoff C. Kaposi’s sarcoma herpesvirus microRNAs induce metabolic transformation of infected cells. PLoS Pathog. 2014;10(9):e1004400.
Article
PubMed
PubMed Central
Google Scholar
Liu X, Zhu C, Wang Y, Wei F, Cai Q. KSHV reprogramming of host energy metabolism for pathogenesis. Front Cell Infect Microbiol. 2021;11:413.
CAS
Google Scholar
Zheng J, Shi Y, Feng Z, Zheng Y, Li Z, Zhao Y, et al. Oncogenic effects of exosomes in γ-herpesvirus-associated neoplasms. J Cell Physiol. 2019;234(11):19167–79.
Article
PubMed
CAS
Google Scholar
Meckes DG, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, et al. Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc Natl Acad Sci. 2013;110(31):E2925–33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yogev O, Henderson S, Hayes MJ, Marelli SS, Ofir-Birin Y, Regev-Rudzki N, et al. Herpesviruses shape tumour microenvironment through exosomal transfer of viral microRNAs. PLoS Pathog. 2017;13(8):e1006524.
Article
PubMed
PubMed Central
Google Scholar
Hoshina S, Sekizuka T, Kataoka M, Hasegawa H, Hamada H, Kuroda M, et al. Profile of exosomal and intracellular microRNA in gamma-herpesvirus-infected lymphoma cell lines. PLoS ONE. 2016;11(9):e0162574.
Article
PubMed
PubMed Central
Google Scholar
Ma T, Patel H, Babapoor-Farrokhran S, Franklin R, Semenza GL, Sodhi A, et al. KSHV induces aerobic glycolysis and angiogenesis through HIF-1-dependent upregulation of pyruvate kinase 2 in Kaposi’s sarcoma. Angiogenesis. 2015;18(4):477–88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Delgado T, Carroll PA, Punjabi AS, Margineantu D, Hockenbery DM, Lagunoff M. Induction of the Warburg effect by Kaposi’s sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proc Natl Acad Sci. 2010;107(23):10696–701.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nachmani D, Stern-Ginossar N, Sarid R, Mandelboim O. Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe. 2009;5(4):376–85.
Article
PubMed
CAS
Google Scholar
Jeon H, Yoo S-M, Choi HS, Mun JY, Kang H-G, Lee J, et al. Extracellular vesicles from KSHV-infected endothelial cells activate the complement system. Oncotarget. 2017;8(59):99841.
Article
PubMed
PubMed Central
Google Scholar
Liu W, You J. Molecular mechanisms of merkel cell polyomavirus transformation and replication. Annu Rev Virol. 2020;7:289–307.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang TS, Byrne PJ, Jacobs LK, Taube JM, editors. Merkel cell carcinoma: update and review. In: Seminars in cutaneous medicine and surgery. NIH Public Access; 2011.
Konstantinell AGV. Biomarkers discovery: the benefit of the study exosomes originated from merkel cell carcinoma cell lines. 2019.
Furuholmen-Jenssen IS. The oncoproteins gelsolin, periostin and thrombospondin are enriched in Merkel cell carcinoma exosomes, and their promoter activity is stimulated by Large T-antigen of Merkel cell polyomavirus: UiT Norges Arktiske Universitet; 2017.
Liu AY, Zheng H, Ouyang G. Periostin, a multifunctional matricellular protein in inflammatory and tumor microenvironments. Matrix Biol. 2014;37:150–6.
Article
PubMed
Google Scholar
Huang T, Wang L, Liu D, Li P, Xiong H, Zhuang L, et al. FGF7/FGFR2 signal promotes invasion and migration in human gastric cancer through upregulation of thrombospondin-1. Int J Oncol. 2017;50(5):1501–12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Borsotti PGC, Ostano P, Silini A, Dossi R, Pinessi D, Foglieni C, Scatolini M, Lacal PM, Ferrari R, Moscatelli D. Thrombospondin-1 is part of a Slug-independent motility and metastatic program in cutaneous melanoma, in association with VEGFR-1 and FGF-2. Pigment Cell Melanoma Res. 2015;28(1):73–81.
Article
PubMed
CAS
Google Scholar
Moens URK, Abdulsalam I, Sveinbjørnsson B. The role of Merkel cell polyomavirus and other human polyomaviruses in emerging hallmarks of cancer. Viruses. 2015;7(4):1871–901.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fan KSI, Gravemeyer J, Ritter C, Horny K, Lange A, Gambichler T, Ødum N, Schrama D, Schadendorf D, Ugurel S. Merkel cell carcinoma-derived exosome-shuttle miR-375 induces fibroblast polarization by inhibition of RBPJ and p53. Oncogene. 2021;40:980–96.
Article
PubMed
CAS
Google Scholar
Yang RLE, Kim J, Choi JH, Kolitz E, Chen Y, Crewe C, Salisbury NJ, Scherer PE, Cockerell C, Smith TR. Characterization of ALTO-encoding circular RNAs expressed by Merkel cell polyomavirus and trichodysplasia spinulosa polyomavirus. PLoS Pathog. 2021;17(5):e1009582.
Article
PubMed
PubMed Central
CAS
Google Scholar
Soltani S, Mansouri K, Emami Aleagha MS, Moasefi N, Yavari N, Shakouri SK, et al. Extracellular vesicle therapy for type 1 diabetes. Front Immunol. 2022;13:865782.
Article
PubMed
PubMed Central
CAS
Google Scholar
Teow S-Y, Liew K, Khoo AS-B, Peh S-C. Pathogenic role of exosomes in Epstein–Barr virus (EBV)-associated cancers. Int J Biol Sci. 2017;13(10):1276.
Article
PubMed
PubMed Central
CAS
Google Scholar
Verweij FJ, de Heus C, Kroeze S, Cai H, Kieff E, Piersma SR, et al. Exosomal sorting of the viral oncoprotein LMP1 is restrained by TRAF2 association at signalling endosomes. J Extracell Vesicles. 2015;4(1):26334.
Article
PubMed
Google Scholar
Wang J. Novel implications of exosomes in diagnosis and treatment of cancer and infectious diseases. BoD–Books on Demand; 2017.
Kung CP, Meckes DG Jr, Raab-Traub N. Epstein–Barr virus LMP1 activates EGFR, STAT3, and ERK through effects on PKCdelta. J Virol. 2011;85(9):4399–408.
Article
PubMed
PubMed Central
CAS
Google Scholar
Qian X, Xu C, Fang S, Zhao P, Wang Y, Liu H, et al. Exosomal microRNAs derived from umbilical mesenchymal stem cells inhibit hepatitis C virus infection. Stem Cells Transl Med. 2016;5(9):1190–203.
Article
PubMed
PubMed Central
CAS
Google Scholar
Elliott RO, He M. Unlocking the power of exosomes for crossing biological barriers in drug delivery. Pharmaceutics. 2021;13(1).
Bonito PD, Ridolfi B, Columba-Cabezas S, Giovannelli A, Chiozzini C, Manfredi F, et al. HPV-E7 delivered by engineered exosomes elicits a protective CD8+ T cell-mediated immune response. Viruses. 2015;7(3):1079–99.
Article
PubMed
PubMed Central
Google Scholar
Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochimica et Biophysica Acta (BBA)-Rev Cancer. 2014;1846(1):75–87.
Article
CAS
Google Scholar
Kim S, Sohn H-J, Lee H-J, Sohn D-H, Hyun S-J, Cho H-I, et al. Use of engineered Exosomes expressing HLA and Costimulatory molecules to generate antigen-specific CD8+ T cells for adoptive cell therapy. J Immunother. 2017;40(3):83–93.
Article
PubMed
CAS
Google Scholar
Stickney Z, Losacco J, McDevitt S, Zhang Z, Lu B. Development of exosome surface display technology in living human cells. Biochem Biophys Res Commun. 2016;472(1):53–9.
Article
PubMed
CAS
Google Scholar
Aqil F, Kausar H, Agrawal AK, Jeyabalan J, Kyakulaga A-H, Munagala R, et al. Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol. 2016;101(1):12–21.
Article
PubMed
CAS
Google Scholar
Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP, Garnis C, et al. Challenges and opportunities in exosome research—perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019;3(1):011503.
Article
PubMed
PubMed Central
Google Scholar