
Kozlov ﻿Infectious Agents and Cancer           (2022) 17:15  
https://doi.org/10.1186/s13027-022-00423-5

REVIEW

Mammalian tumor‑like organs. 2. 
Mammalian adipose has many tumor features 
and obesity is a tumor‑like process
A. P. Kozlov1,2,3*   

Abstract 

Background:  In previous publications, the author developed the theory of carcino-evo-devo, which predicts that 
evolutionarily novel organs should recapitulate some features of tumors in their development.

Main text:  Mammalian adipose is currently recognized as a multi-depot metabolic and endocrine organ consist-
ing of several adipose tissues. Although lipid-storing cells and proteins are ancient, the adipose organ as a whole is 
evolutionarily novel to mammals. The adipose expansion has remarkable similarities with the growth of solid tumors. 
These similarities are the following: (1) The capability to unlimited expansion; (2) Reversible plasticity; (3) Induction 
of angiogenesis; (4) Chronic inflammation; (5) Remodeling and disfunction; (6) Systemic influence on the organism; 
(7) Hormone production; (8) Production of miRNAs that influence other tissues; (9) Immunosuppression; (10) DNA 
damage and resistance to apoptosis; (11) Destructive infiltration in other organs and tissues. These similarities include 
the majority of “hallmarks of cancer”. In addition, lipomas are the most frequent soft tissue tumors, and similar drugs 
may be used for the treatment of obesity and cancer by preventing infiltration. This raises the possibility that obesity, 
at least in part, may represent an oncological problem. The existing similarities between adipose and tumors suggest 
the possible evolutionary origin of mammalian adipose from some ancestral benign mesenchymal hereditary tumors. 
Indeed, using a transgenic inducible zebrafish tumor model, we described many genes, which originated in fish and 
were expressed in fish tumors. Their human orthologs LEP, NOTCH1, SPRY1, PPARG​, ID2, and CIDEA acquired functions 
connected with the adipose organ. They are also involved in tumor development in humans.

Conclusion:  If the hypothesis of the evolutionary origin of the adipose organ from the ancestral hereditary tumor is 
correct, it may open new opportunities to resolve the oncological problem and the problem of the obesity epidemic. 
New interventions targeting LEP, NOTCH1, SPRY1, PPARG​, ID2, and CIDEA gene network, in addition to what already is 
going on, can be designed for treatment and prevention of both obesity and tumors.
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Background
In previous publications, the author developed the theory 
of carcino-evo-devo, which describes the coevolution of 
normal and neoplastic development [1, 2]. I formulated 

the hypothesis of evolution by tumor neofunctionaliza-
tion (below I will call it "the main hypothesis"), which 
suggested that the evolutionary role of hereditary tumors 
might consist in supplying evolving multicellular organ-
isms with extra cells masses for expression of evolution-
arily novel genes and the origin of new cell types, tissues, 
and organs [1, 2].

Several non-trivial predictions of the main hypothesis 
have been confirmed in my laboratory ([1–4], reviewed 
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in [5]). One non-trivial prediction of the main hypothesis 
is that evolutionarily novel organs if they indeed origi-
nated from hereditary tumors or tumor-like structures, 
should recapitulate some features of tumors in their 
development. That is why in previous articles [2, 3, 5] I 
was looking for the data that might confirm this predic-
tion in the literature, and also performed some experi-
ments in my lab. The first paper in this series [5] reviewed 
the evidence that evolutionarily novel organs such as the 
placenta, mammary gland, prostate, and infantile brain 
indeed have many features of tumors including the regu-
lated invasiveness at certain stages of their development 
and higher incidence of cancer. In that paper, I suggested 
calling evolutionarily new normal organs, which have 
many tumor features, the tumor-like organs for brevity 
[5].

In the present paper, the author reviews the evidence 
that mammalian adipose, the other evolutionarily novel 
organ of mammals, has many tumor features as well, and 
obesity is a tumor-like process. A hypothesis of the pos-
sible evolutionary origin of mammalian adipose from 
hereditary mesenchymal tumors is formulated and sup-
porting data obtained in the author’s lab are discussed.

Main text
Mammalian adipose is a metabolic and endocrine organ 
evolutionarily novel to mammals
Adipose is a metabolic and endocrine organ operating 
“as a structured whole” [6, 7]. The concept of adipose as a 
large multi-depot organ with discrete anatomy was devel-
oped by S. Cinti [6, 8–10]. The adipose organ consists of 
white adipose tissue and brown adipose tissue distributed 
in a series of subcutaneous and visceral depots. Each 
depot of the organ has its own vascular and nerve sup-
ply. White adipose tissue (WAT) is involved in triglycer-
ide/energy storage, and brown adipose tissue (BAT)—in 
energy expenditure.WAT and BAT differ in morphology 
and location [10]. The third type of fat, beige adipose tis-
sue, resembles brown adipose morphologically and func-
tionally, but its development is closer to the development 
of white adipose tissue [10, 11]. Some authors also con-
sider bone marrow adipose as a separate type of adipose 
tissue [12].

Adipose has a mesodermal origin, but white and 
brown adipocytes develop from separate precursor cells, 
through separate differentiating lineages, and by using 
different differentiation factors. Beige adipocytes develop 
from precursors of white adipocytes [13, 14]. Adipose 
cells can also originate from tumor cells—trans-differen-
tiation of breast cancer cells into functional adipocytes 
was reported [15].

Although the storage of energy in lipids is evolutionar-
ily conserved, and lipid-storing cells and proteins (FIT) 

are ancient [16, 17], the adipose organ is evolutionar-
ily novel to mammals [18]. BAT has not been described 
in fishes, amphibians, reptiles, or birds, and is present 
only in higher mammals [19, 20]. The overview of the 
evolution of adipose tissue depots shows the gradual 
accumulation of features such as the way of fat storage, 
leptin, BAT, uncoupling protein-1 (UCP-1) in BAT, and 
thermoregulation in mammalian evolutionary lineage 
[19]. Adipose organ acquired several fundamental meta-
bolic functions since the early evolution of mammals as 
an adaptation to new diets and thermoregulation [18]. 
Adipose plays a central role in the energy metabolism 
and maintenance of glucose homeostasis [21]. Adipose 
associated with other organs has a diversity of additional 
functions and adaptations, and participate in morphoge-
netic processes [17].

Similarities of mammalian adipose to tumors
The capability of unlimited expansion
The main similarity of adipose to tumors is its capability 
to almost unlimited expansion. Variations in nutrition or 
environmental temperature cause dramatic anatomical 
changes in the adipose organ. In obesity, it can increase 
its mass tremendously. Adipose tissue expands due to 
hypertrophy and hyperplasia of adipocytes. The authors 
stress that there are “remarkable similarities between 
adipose expansion and growth of solid tumors” [22]. The 
adipose expansion may lead to a pathological condition, 
i.e. obesity and related metabolic disorders. Obesity is 
a risk factor for developing lipomas and other types of 
tumors, not only adipose tumors.

Relatively high prevalence of mammalian adipose tumors
Adipose tumors comprise a large group of human 
tumors. Lipomas are the most frequent soft tissue tumors 
(50% of all soft-tissue masses) and are found in 2% of the 
population [23–25]. The mammary gland and prostate, 
the other evolutionarily novel mammalian organs, are 
also characterized by the highest incidence of tumors 
[26]. Lipomas are benign tumors, while liposarcomas 
are malignant adipose tumors with different degrees of 
malignancy. Liposarcomas are the most prevalent soft 
tissue malignancy [24, 27–29].

The remarkable plasticity of mammalian adipose
The reversible plasticity of cancer cells is well known 
(reviewed in [2]). Cell plasticity is defined as “the abil-
ity of cells to change their phenotypes without genetic 
mutations in response to environmental cues” [30]. Neo-
plasms have been associated with increased plasticity, 
although cell plasticity was first observed during normal 
development.
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The plasticity of the adipose is remarkable and reminds 
that of tumors. The adipose organ can increase in size or 
regress, depending on the energy balance. Earlier stud-
ies suggested adipocytes transdifferentiation during cold 
exposure, physical exercise, lactation, and obesity [9, 10]. 
At present, the appearance of beige adipocytes in WAT 
depots after cold exposure or stimulation (beiging or 
browning of WAT) is viewed as direct transdifferentia-
tion of white adipocytes, or as differentiation from pro-
genitor cells. The process of WAT beiging is reversible 
[31–33].

Adipose is involved in the development of the mam-
mary gland, the other novel mammalian organ with many 
tumor features. Subcutaneous adipose depots partici-
pate in mammary gland formation during lactation and 
pregnancy [9]. Earlier data suggested that mammary adi-
pocytes transdifferentiate into mammary epithelial cells 
during mammary gland development [8, 9]. The latest 
cell lineage tracing studies showed that white adipocytes 
in the mammary gland and skin can reversibly dediffer-
entiate into preadipocytes [33], and adipocyte progenitor 
cells can differentiate into epithelial cells of the mam-
mary gland [34]. White adipocytes can reversibly trans-
differentiate into myofibroblasts and cancer-associated 
fibroblasts during fibrosis and cancer, and dedifferenti-
ate in liposarcomas [33]. These new data support the 
earlier evidence on the possibility of mammary adipo-
cytes transdifferentiation into mammary epithelial cells 
[8, 9]. On the other hand, as already mentioned above, 
EMT-derived breast cancer cells can trans-differentiate 
into post-mitotic functional adipocytes [15]. Mammary 
adipose controls breast cancer progression: mammary 
preadipocytes act locally by releasing cytokines, growth 
factors, and extracellular matrix components [35]. Inter-
estingly, liposarcomas are very rare in the mammary 
gland that is characterized by the high incidence of can-
cer [27, 28].

Adipose expansion induces angiogenesis
Tumor growth induces angiogenesis. Similarly, adipose 
expansion also induces angiogenesis. The angiogenic 
activity of adipocytes is connected with the secretion of 
pro-angiogenic molecules. The newly formed vasculature 
is important for adipogenesis. Angiogenesis is a rate-lim-
iting step for adipose expansion [22, 36].

Chronic inflammation
Like solid tumors, adipose expansion is connected with 
hypoxia. Hypoxia is one of the factors that cause mac-
rophage infiltration of obese adipose tissue. The other 
factors are adipocyte death, chemotactic regulation, and 
fatty acid flux [22]. Infiltrated macrophages participate 
in adipose tissue inflammation. Saturated fatty acids 

released from adipocytes are ligands for Toll-like recep-
tor 4 complex located on macrophages. Their interaction 
induces inflammatory changes in macrophages, which 
include TNFα production. A paracrine loop involving 
saturated fatty acids and TNFα causes chronic inflamma-
tory responses in adipose tissue [37]. Low-grade chronic 
inflammation connected with obesity is a risk factor for 
many cancers [38].

Similar interactions between endogenous ligands and 
pathogen sensors occur in tumors which are also chronic 
inflammatory diseases. Tumor-associated macrophages 
are a major type of inflammatory cells infiltrating most 
tumors. The recruitment of immune cells and increased 
expression of inflammatory mediators in tumors consti-
tute the phenomenon of tumor-elicited inflammation. 
Inflammation is connected with the initiation of tumors 
and with different stages of tumor progression [38].

Remodeling and disfunction
Considerable changes in obese adipose tissue, including 
changes of extracellular matrix (ECM), adipogenesis, and 
metabolism, constitute adipose tissue remodeling [22, 
37]. Tumors also undergo considerable dynamic changes 
and remodeling of chromatin [39], ECM [40, 41], vascu-
lature [42], and metabolism [43].

Inflammation, fibrosis, and impaired angiogenesis 
cause disfunction of adipose organ, which leads to obe-
sity and related metabolic complications [44, 45]. The 
loss of function and differentiation features is also con-
nected with tumor development (reviewed in [2]).

DNA damage and resistance to apoptosis
Obesity-related inflammation and oxidative stress cause 
DNA damage in adipocytes and other tissues [46] that 
can lead to obesity-related carcinogenesis [47]. This sug-
gests the similarity of DNA damage mechanisms in obe-
sity and carcinogenesis. There are even more similarities. 
DNA damage in obese adipocytes activates the p53 path-
way [48], as it does in tumors [49]. p53 negatively regu-
lates both tumorigenesis and adipogenesis [50].

DNA damage is an initial stage of molecular processes 
that leads to genomic instability. Genomic instability is a 
feature of most tumors [51].

In hereditary cancers, mutations in DNA repair genes 
cause genomic instability [51]. CIDE proteins involved 
in regulating lipid metabolism belong to the family of 
Cell death-Inducing DNA fragmentation Factor Alpha 
(DFFA)-like Effector proteins. They may participate in 
the DNA fragmentation step in apoptosis [52, 53].

Apoptosis of adipocytes is anticipated in the stressful 
obese environment. However, anti-apoptotic factors such 
as YAP, TAZ, and Bcl2 are activated in obese adipocytes 
protecting them from cell death [54], a situation similar 
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to that in tumor cells. Survivin, another potent apopto-
sis inhibitor, is upregulated in obesity by inflammation 
and oxidative stress. Survivin is also the regulator of lipid 
storage and metabolism. On the other hand, survivin is 
an oncogene expressed in most tumors. Thus, survivin 
is the direct molecular link between obese adipose and 
tumors [55].

Systemic influence in the organism
Adipose, as the central energy metabolism regulator, 
influences other tissues’ metabolism. Adipose regulates 
the other tissues’ metabolism according to the nutritional 
balance of the organism. Obesity causes systemic meta-
bolic disorders such as insulin resistance and diabetes [7, 
56, 57]. The systemic influence of tumors on the organ-
ism has also been known since long ago [58, 59].

Tumor cells have a higher rate of glucose consumption 
than normal cells [60–62]. That is why tumors are called 
"the glucose trap" [61]. Adipose has enhanced glucose 
utilization during accelerated body-fat recovery (catch-
up fat), which is connected with muscle-adipose glucose 
redistribution [63, 64]. The authors use the terminology 
“the glucose sink” to describe the role of enhanced de 
novo lipogenesis in regulating glycemia during catch-up 
growth [65].

Cancer can cause cachexia, a wasting syndrome. 
Cachexia is associated with systemic inflammation con-
nected with tumors and tumor-induced changes in the 
metabolism [66, 67]. Brown adipose tissue and energy 
expenditure are increased in cachexic patients. The 
uncoupling protein UCP3, found in brown adipose tissue, 
is increased in cancer and is connected with high energy 
expenditure [68]. Tumor-derived parathyroid hormone-
related protein (PTHrP) is involved in adipose beiging, 
energy-wasting, and cancer cachexia [69].

Hormone production  Both adipose and tumors produce 
hormones. The concept of adipose as an endocrine organ 
is widely accepted [7, 56, 70, 71]. Adipose organ secretes 
several hormones (adipokines and batokines [72]) and 
classical cytokines, especially TNFα. The energy metabo-
lism is regulated by adipokines leptin, adiponectin, resis-
tin, and others [56]. Leptin has an important physiological 
role in the central control of energy and lipid metabolism 
and the regulation of metabolism-immune system inter-
play (immunometabolism) [73]. Mammalian leptin is 
defined as a lipostatic signal, which regulates energy bal-
ance by controlling food intake. It also regulates glucose 
homeostasis maintenance and participates in the regula-
tion of immunometabolism [56, 73].

The phenomenon of hormone secretion by non-
endocrine tumors is known as “ectopic” hormone pro-
duction [74–76]. It causes unique clinical syndromes 

or endocrine paraneoplastic syndromes. These syn-
dromes represent an important cause of morbidity and 
mortality [77]. Ectopic hormones are similar to normal 
hormones, but in tumors, they usually are present in 
lower amounts per unit mass than in normal endocrine 
organs.

miRNA production  Both adipose and tumors pro-
duce miRNAs that influence other tissues. For example, 
adipose-derived circulating miRNAs can regulate gene 
expression in other tissues [78]. Tumor-derived immune-
modulatory miRNAs influence cancer immune surveil-
lance and immune escape [79].

Immunosuppression  Obesity and related metabolic syn-
drome cause negative effects on immunity [56, 73, 80, 81]. 
Cancer immunosuppression is also a well-known phe-
nomenon [82–85]. Obese metabolism suppresses antitu-
mor immunity [86].

Destructive infiltration in other organs and tissues
Ectopic lipid deposition (ELD) in skeletal muscles, heart, 
liver, pancreas, placenta, and kidney during obesity is a 
major cause of metabolism distortion [87–89]. ELD is 
caused by the formation of lipid droplets in the organ’s 
parenchymal cells; in adipocytes originated by differenti-
ation of resident adipogenic progenitors; or in adipocytes 
differentiated after infiltration of organs with adipocyte 
progenitors from subcutaneous adipose tissue [90–93]. 
Infiltration of adipocyte progenitors in other organs with 
a negative influence on these organs’ functions is the 
most important similarity with tumor metastasis.

CXCL12/CXCR4 chemokine axis participates in tumor 
progression and metastasis [94–96]. Adipocyte progeni-
tors trafficking is also regulated by the CXCL12/CXCR4 
axis [93].

Similar drugs may be used for the treatment of obesity 
and cancer
Thiazolidinediones (or glitazones) are used for the treat-
ment of type 2 diabetes. By binding peroxisome prolifera-
tor-activated receptor gamma (PPARγ) they promote the 
maturation of adipocytes. They also suppress tumor cell 
invasion, migration, and invasiveness through CXCL12/
CXCR4 pathway. In addition, it was found that treatment 
of mice with pioglitazone (a member of the glitazone 
group) prevents infiltration of adipocyte progenitors 
in skeletal muscles [93]. The other class of antidiabetic 
drugs—biguanides—also act as anti-carcinogens and 
inhibitors of tumor growth [97–99].
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The connection between obesity and cancer
Obesity-related inflammation and oxidative stress cause 
DNA damage that can lead to obesity-related carcino-
genesis [47].

Obesity and type 2 diabetes are associated with the 
risk of cancer and cancer-related mortality, as shown in 
epidemiological studies [100]. The link can be related to 
the insulin/insulin-like growth factor (IGF) system [57, 
100]. Throughout evolution, this system “has integrated 
the control of tissue growth with metabolic status" [57]. 
Tumors are connected with the insulin/IGF system and 
systemic metabolism. The development and progression 
of several types of cancer are determined by the insulin/
IGF system [98]. The factors that play a role in this con-
nection include insulin resistance, hyperinsulinemia, 
increased levels of insulin growth factors (IGFs), hor-
mones, and inflammatory markers [57, 100, 101].

Using Paget’s terminology of “seed” and “soil” as related 
to tumor metastasis [102], Holly and co-authors describe 
the internal milieu of obese individuals, or "soil," as con-
taining high levels of glucose, insulin, insulin-like growth 
factors, inflammatory cytokines, and adipokines. These 
authors believe that such an environment stimulates the 
latent neoplastic lesions, the "seeds," to progress to clini-
cal cancer [57]. Indeed, obese metabolism suppresses 
antitumor immunity [86].

The paradox of some benefits of obesity in cancer is 
also known: moderate overweight and early obese states 
can improve the survival and response to therapy [103, 
104].

Mammalian adipose is a tumor‑like organ, and obesity 
is a tumor‑like process
Thus, adipose, an evolutionarily young organ of mam-
mals, shares many features with tumors. Adipose unlim-
ited expansion is similar to tumor growth, and lipomas 
are the most frequent soft tissue tumors. Chronic inflam-
mation is characteristic of obese adipose and tumors. 
Both adipose and tumors exert systemic metabolic and 
immunological influence on the organism; both partici-
pate in paracrine and endocrine interactions with other 
tissues; both produce miRNAs that influence other tis-
sues; both are characterized by plasticity, induce angio-
genesis and participate in morphogenetic processes. 
Tumors act as “glucose trap”, and adipose during catch-
up fat—as “glucose sink”. Obese adipose and tumors can 
cause immunosuppression; obese adipose and tumors are 
connected with remodeling and disfunction, with DNA 
damage and cell death resistance. Most important, adi-
pose cells can metastasize into normal organs and impair 
their functions, similarly to malignant tumors. Finally, the 
same drugs and interventions are used against obesity, 

diabetes, ectopic lipid deposition, and tumors. Many of 
the common features of tumors and adipose organ are in 
the list of so-called "hallmarks of cancer" [105], and many 
of them are connected with the obese state of the adipose 
organ.

As discussed earlier, other evolutionarily novel organs 
of mammals, such as the placenta, mammary gland, and 
prostate, also have many tumor features [2, 5]. However, 
evolutionarily older organs are characterized by lower 
cancer rates [26] and do not have (or have fewer) tumor 
features. The author suggested calling normal organs, 
which have many tumor features, the "tumor-like organs" 
[3, 5]. We may conclude that mammalian adipose is a 
tumor-like organ and obesity is a tumor-like process.

The possible origin of mammalian adipose from ancestral 
mesenchymal hereditary tumors
The mammalian adipose organ’s tumor features suggest 
its recent evolutionary origin from ancestral heredi-
tary tumors. Following the main hypothesis, the adipose 
organ’s origin may be represented as follows. Some dif-
fuse mesenchymal hereditary tumors in eutherian 
ancestors, which produced several biologically active 
compounds (future adipokine hormones), acquired the 
capability to synthesize and accumulate fat using pre-
existing and evolutionarily novel genes. Accumulation 
of lipids inhibited the potential of progression to malig-
nancy ("gain fat—loose metastasis," [15]) and, together 
with future adipokine substances, was selected in ances-
tral Mammalia for control of energy metabolism in con-
nection to the nutritional status of the organism, as an 
adaptation to new diets and thermoregulation. As a result 
of this evolutionary process, the evolutionarily novel 
mammalian organ involved in the storage and expendi-
ture of energy with many ancestral tumor features—the 
adipose organ—originated.

The lab of the author has already obtained the evidence 
in support of a hypothesis specific to the origin of mam-
malian adipose organ.

In our previous article [4], we studied fish genes 
expressed in transgenic zebrafish inducible tumors, 
tumors after regression, and spontaneous zebrafish 
tumors. Among these genes, using the Orthologous 
Matrix (OMA) approach, we selected genes evolutionar-
ily novel to fishes (as compared to lamprey, myxine, and 
other organisms in fish evolutionary lineage), and stud-
ied their human orthologs. We described many human 
orthologs that acquired progressive functions (such as 
involvement in the development of the placenta, mam-
mary gland, lungs, neocortex, according to Gene Ontol-
ogy studies), which are not encountered in fish [4]. 
Several of those human genes with progressive func-
tions—LEP, NOTCH1, SPRY1, PPARG, ID2, and CIDEA 
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genes—also acquired functions connected with the adi-
pose organ.

Thus, human LEP, which encodes leptin, became the 
central regulator of energy metabolism in mammals. It is 
involved in beige/brown fat cell differentiation regulation 
[4, 106] and lipostatic function (fish leptin is not an adi-
postat [107, 108]). Mammalian leptin is also involved in 
thermoregulation [109, 110].

NOTCH1 regulates adipose browning, energy metabo-
lism, and thermogenesis [111, 112].

SPRY1 is mandatory for the initiation and regulation of 
adipogenesis, for maintaining proliferation and differen-
tiation of human adipose stem/progenitor cells (ASCs). 
It is induced in ASCs after weight loss [113, 114]. SPRY1 
can suppress PPARG​ [115].

PPARG​, the ortholog of the fish pparg gene, was 
selected in [4] because of its involvement in placenta 
development. Peroxisome proliferator-activated recep-
tor gamma (PPARγ), encoded by PPARG​, is the target of 
thiazolidinediones antidiabetic treatment, as discussed 
above. PPARγ participates in the differentiation of adi-
pocytes and activation of thermogenic gene expression 
in brown adipocytes [116]. PPARγ is a major regulator 
of adipocyte differentiation and function [117]. It plays a 
role in lipodystrophy, obesity, and diabetes [118] and can 
downregulate LEP gene expression [104, 119].

ID2 stimulates PPARγ expression, adipocyte differenti-
ation, and adipogenesis. Its expression is elevated in adi-
pose tissues during obesity [120].

The CIDEA gene was also found among human 
orthologs of novel fish genes expressed in fish tumors 
[4]. CIDE proteins are associated with lipid droplets and 
regulate lipid metabolism. CIDE protein family includes 
CIDEA, CIDEB, and CIDEC proteins [52, 53]. In mice, 
CIDEA is a marker of brown and brite adipocytes [121]. 
In humans, the CIDEA gene regulates adipocyte beig-
ing [122]. It means that in mammals CIDEA gene also 
acquired progressive functions not encountered in fish. 
Transcription of CIDEA gene is activated by PPARγ [52].

Each of the LEP, NOTCH1, SPRY1, PPARG​, ID2, and 
CIDEA genes is also involved in tumor development in 
humans.

Leptin is overexpressed in breast cancer [104] and 
many other types of cancer [123], has a role at different 
levels and participates in cancer progression. Its activa-
tion results in the activation of multiple oncogenic path-
ways. Leptin oncogenic functions are reinforced through 
crosstalk with oncogenes, e.g. NOTCH [104].

NOTCH1 has both oncogenic and tumor suppressor 
abilities [124, 125].

SPRY1 is downregulated in some tumors and over-
expressed in other tumors. Depending on the cellu-
lar context, it may serve either as a tumor suppressor 

or tumor promoter. SPRY1 expression is essential for 
induction, maintenance, and progression of tumors 
[126–131].

PPARγ plays oncogenic and tumor suppressor roles. 
PPARγ functions as a tumor suppressor in colon, lung, 
pancreatic, and breast cancers. A tumor-promoting 
role for PPARγ has been suggested in a variety of can-
cers as well [117].

ID family of proteins participates in the regulation 
of pathways essential to the progression of cancer. ID 
gene transcription is sensitive to signals from the cel-
lular environment including oncoproteins. Depending 
on the context, ID proteins can play tumor-promoting 
or tumor-suppressing roles [132–134]. The tumor-sup-
pressive role of ID2 has been described in [135, 136], 
and its oncogenic role—in [137].

CIDE proteins control lipid droplets’ size and metab-
olism [53]. Lipid droplets actively participate in tumor 
processes and accumulate in a variety of cancer cells 
[138, 139]. CIDEA controls the beiging of adipocytes 
[122], and beige adipocytes contribute to breast can-
cer progression [140]. CIDEA plays an important role 
in human cachexia [141]. CIDE proteins were originally 
discovered as apoptotic proteins. They induce caspase-
independent cell death in various cell types [53] that 
can be connected with cancer processes.

Once more, orthologs of LEP, NOTCH1, SPRY1, 
PPARG​, ID2, and CIDEA genes originated in fishes 
and were expressed in fish tumors. In humans, these 
genes acquired progressive functions not encountered 
in fishes, including functions connected with mamma-
lian adipose organ, form a gene network with mutual 
influences, and participate in tumor processes. These 
genomic and transcriptomic data support the possibil-
ity of mammalian adipose origin from ancestral heredi-
tary tumors and the tumor-like nature of mammalian 
adipose.

The hypothesis of adipose origin by ancestral tumor 
neofunctionalization is also strongly supported by the 
experimental cytology approach: it was demonstrated 
that breast cancer cells can trans-differentiate, in experi-
mental conditions of adipogenesis, into post-mitotic 
functional adipocytes with the loss of malignancy [15]. 
Similarly, by trans-differentiation after the expression 
of evolutionarily novel genes and gene combinations 
involved in adipogenesis, mammalian adipocytes could 
originate in evolution from ancestral hereditary tumor 
cells.

The possible origin of mammalian adipose from ances-
tral tumors is in correspondence with other examples of 
hereditary tumors, which played roles in the origin of 
new cell types, tissues, and organs discussed in our previ-
ous publications [1–3, 5].
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Conclusion
The ongoing synthesis of evolutionary biology and health 
sciences attempts to find evolutionary roots of disease [1, 
142, 143]. If the hypothesis of the evolutionary origin of 
the adipose organ from the ancestral hereditary tumor is 
correct, it may help find new clues to obesity and cancer. 
Approaches developed to prevent and treat obesity may 
be examined to prevent and treat tumors and vice-versa. 
Empirically, some of such approaches are already under-
way [144]. Cancer metabolism is currently being studied 
for therapeutic opportunities, along with calorie restric-
tion interventions for the prevention and treatment of 
cancer. Obese adipose supports tumor growth in vari-
ous ways, and interventions aimed at metabolic disorders 
caused by adipose expansion may also be effective against 
tumors.

Our hypothesis may add a theoretical ground to such 
studies and may open new opportunities to resolve the 
oncological problem and the problem of the obesity 
epidemic. New interventions targeting LEP, NOTCH1, 
SPRY1, PPARG​, ID2, and CIDEA gene network, in addi-
tion to what already is going on, can be designed for 
treatment and prevention of both obesity and tumors.
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