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Human papillomavirus genome variants
and head and neck cancers: a perspective
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Abstract

Human papillomaviruses (HPV) cause infections that are responsible for diverse clinical manifestations from benign
conditions to invasive cancer. As different HPV types are associated with variable pathogenic potential, minor
genetic variations within a given high-risk HPV type might also be associated with distinct oncogenic capacities,
through variable ability of persistence or risk of progression to precancer/cancer. Most recent HPV variant studies in
the cervix using latest sequencing technology confirmed that minor changes in the HPV genome can have a major
influence on carcinogenesis and have revealed key data that help better understand the carcinogenicity of HPV at a
molecular level. Here we review the limited number of studies on HPV genome variants in head and neck cancers
(HNC) and discuss their implications for cancer research in the light of accumulated knowledge for the cervix.
Challenges in transposing HPV variant studies from the lower anogenital to the upper aerodigestive tract are also
discussed, highlighting the main gaps of knowledge in the field of HPV-induced HNC. Specifically in the head and
neck region, the lack of characterisation of precancerous lesions and the difficulty in sampling normal tissue will
challenge the development of accurate studies. Although there is so far no indication that HPV variant research in
HNC could directly translate into clinical application, such research is expected to be useful to disentangle
unanswered questions in the pathogenesis of HNC. Yet, history of HPV variant research suggests that, to be
successful, studies will require large international collaborative efforts.
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Background
Human papillomaviruses (HPV) cause infections that are
responsible for diverse clinical manifestations from warts
(papillomas) to invasive cancer. A dozen high-risk (HR)
HPV types are powerful human carcinogens and the pri-
mary cause of cancer of the cervix and anogenital tract [1].
In the upper aerodigestive tract, HPV16 is recognized as
the cause of a growing proportion of cancer of the orophar-
ynx, particularly in the tonsil and the base of the tongue, al-
though with substantial international variations [2].
It is well established that although all HPV are genetically

related, their pathogenic characteristics differ widely [1]. As
different HR-HPV types are associated with variable patho-
genic potential [3], minor genetic variations within a given
HR-HPV type might also be associated with distinct onco-
genic capacities, through variable ability of persistence or

risk of progression to precancer/cancer [4]. With recent
improvement in DNA sequencing technology [5], promis-
ing findings were reported on the influence of HPV variants
in carcinogenesis in cervical cancer that has been much
more extensively studied than head and neck cancer (HNC)
[6, 7], opening potential scope for clinical applications.
In the present article, we reviewed the limited number

of studies on HPV genome variants in HNC and dis-
cussed their implications for cancer research in the light
of accumulated knowledge in the cervix. Challenges in
transposing HPV variant studies from cervical to HNC
are also discussed, highlighting the main gaps of know-
ledge in the field of HPV-induced HNC.

Terminology
Papillomaviruses are small non-enveloped viruses with
circular double-stranded DNA of around 7000–8000 nu-
cleotides infecting skin and mucosa of a variety of mam-
mals, reptiles and birds [1]. Papillomaviruses are highly
species-specific and are considered to have coevolved
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with their host since their origin, for hundreds of mil-
lions of years. The stability of the double-stranded struc-
ture of the genome results in a low mutation rate and it
is considered that it takes millions of years for sequential
accumulation of genetic changes to become fixed, lead-
ing to distinct HPV types [8].
Papillomaviruses are subdivided in genus, species, types

and subtypes according to degree of viral genetic variation.
Evaluation of differences in the L1 open reading frame
DNA sequence is considered sufficient up to type-level
classification, as it is accepted that L1 is robust enough to
fully determine these subdivisions [9]. Differences of more
than 40% between 2 HPV sequences define different
“genus” (e.g., Alphapapillomavirus, Betapapillomav-
rius), differences of 30–40% define “species” (e.g.,
Alphapapillomavirus 7, Alphapapillomavirus 8), and
differences of 10–30% define “types” (e.g., human papil-
lomavirus 16 belonging to Alphapapillomavirus 9). Of
note, the International Committee on Taxonomy of Vi-
ruses provides a taxonomic nomenclature only up to
the species level [10].
HPV “variants” are smaller genetic variations in the viral

DNA sequence within a given HPV type. At the subtype
level, the evaluation of the difference in the whole genome
sequence is considered necessary [9]. Differences between
1 and 10% define “lineages” (e.g., HPV16_A, HPV16_B)
and differences between 0.5 to 1% define “sublineages”
(e.g., HPV16_A1, HPV16_A2). The terminology is,
however, evolving rapidly following progress in molecu-
lar biology and often hampers appropriate comparisons
across studies. Previously used HPV variant classifica-
tion referring to geography (e.g., “African-1”, “Asia-
American”, “European”) corresponds to population
groups where each lineage is most often found, but,
although being practical, the use of this terminology is
no longer recommended [9, 11]. Sublineages A1, A2
and A3 correspond to previously termed “European”
lineage; lineages B and C to “African-1” and “African-
2”, respectively, sublineage D1 to “North-American”,
sublineages D2 and D3 to “Asian-Amercian”, and subli-
neage A4 to “Asian”.
At the subtype level, minor genetic variations that do

not fit a phylogenetic tree are also characterised (herein-
after referred to as “non-lineage-specific HPV variants”)
and correspond to more recent mutations. These non-
synonymous single nucleotide changes that can appear in-
dependently from lineages are characterised by their DNA
or amino acid substitution (e.g., HPV16 T350G located on
E6 gene corresponds to L83 V amino acid change).

Early studies on HPV variants and cervical cancer
All twelve HR-HPV belong to the Alphapapillomavirus
genus (species 5, 6, 7 or 9) but widely differ in preva-
lence (related to evolutionary fitness) and risk of causing

precancer/cancer. In the same manner, intra-type genetic
variations might present differential pathogenic pro-
perties, through variable capacity to trigger immune
response, ability to persist, or risk of progression to pre-
cancer/cancer. It is, for instance, conceivable that a
minor variation in the E6 or E7 sequence may induce
differential propensity of the corresponding protein to
bind p53 or pRB and impact the risk of progression to
cancer by modifying their capacity to inactivate the cor-
responding tumour suppressor functions.
Risk associated to HPV variants in cervical carcinogen-

esis has been studied since the early 1990s [12, 13]. There
is a substantial accumulation of data from epidemiologic
and mechanistic studies on the influence of various HPV
variants in cervical pathogenesis. Historically, HPV vari-
ants in the cervix were compared for “European” versus
“non-European” HPV lineages (“A” vs. “B/C/D” (sub)line-
ages following the most recent nomenclature). The “non-
European” HPV16 lineages have been generally found to
be associated with higher persistence [14, 15] and higher
progression to cancer [14–20] compared to “European”
lineages, most often in studies from Europe and USA. An-
other well-studied HPV variant, T350G, is non-lineage-
specific and corresponds to a single nucleotide change in
the HPV16 E6 gene. HPV16 350G was similarly associated
with higher persistence [21–23] and progression to cancer
[24–28] compared to HPV16 350 T. Some experimental
and mechanistic evidence has partly supported the plausi-
bility of these associations [28–36]. Other studies have
also suggested differential risk of glandular vs. squamous
cancers associated with specific HPV lineages [20, 37, 38].
However, globally, early studies on HPV variants in the

cervix were judged as relatively disappointing. Inad-
equate sample size probably partly explains the incon-
sistencies between these studies with regard to the
direction of the variants’ effect, but also prevented fur-
ther evaluation of these observations [39–47]. Indeed,
functional differences might be attributed not only to
the effect of one isolated genetic variation but to specific
combinations of amino acid changes. In fact, early stud-
ies had already by that time strongly suggested that the
observed increased pathogenicity related to some HPV
variants could be specific to a population [48–50] be-
cause of host-related factors [42, 51–53].

Next-generation sequencing era and studies on HPV
variants
With recent development of next-generation methods,
their increasing availability and adaptability to large-
scale populations, promising findings have emerged on
pathogenic effects related to HPV variants in cervical
cancer. These greatly improved approaches pave the way
for the evaluation of variants in other HPV-associated
cancer sites such as cancer of the oropharynx.
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Mirabello et al. evaluated the association between
HPV16 lineages and risk of precancer/cancer in 3200
women from a US cohort [6], using a whole genome se-
quencing assay optimized for HPV genome sequencing
[5]. This study confirmed the early observation of a
higher risk of precancer/cancer associated with B/C/D
as a group compared to A lineages. Most importantly,
further stratification by sublineage and by specific histo-
logic outcome was possible due to appropriate sample
size. In this case-control analysis (controls being
HPV16-positive women without cervical intraepithelial
neoplasia (CIN) grade 2+ after ≈3 years follow-up), it
was shown that the overall association between HPV16
lineage and cervical cancer risk masked strong hetero-
geneity in pathogenicity according to sub-lineage and
disease outcome.
Indeed, it was shown that previously defined “European”

variants actually regrouped sublineages with substantially
different risks of precancer/cancer. For instance, risk asso-
ciated with sublineage A4 was markedly higher compared
to A1/A2. In the same manner, risk associated with hist-
ology outcome showed strong heterogeneity. Odds ratio
(OR) of glandular cancer for D2 vs A1/A2 sublineages was
137.3 (95% CI: 37.2–506.9) whereas OR of squamous can-
cer was 7.6 (95%CI: 1.4–39.8). This finding was corrobo-
rated by a comparable study using samples collected
worldwide [54]. Although the absolute risk of cervical
adenocarcinoma remains low, such a high effect size
points to possibilities for a clinical application, given the
difficulty to identify glandular lesions by cytology and a
poorer prognosis compared to squamous type.
In addition, this study confirmed the early observation

that some variants present a higher carcinogenic effect
in women whose genetic background corresponds to
that of the virus. For instance, Caucasian white women
infected with A1/A2 variant were at a higher risk of
CIN3+ compared to women of other genetic back-
grounds. Similarly, Asian and Hispanic women had in-
creased risk, although non-significant, associated with
A4 and D2/D3 sublineages compared with other races/
ethnicities. Of note, the magnitude of the effect of asso-
ciations with genetic backgrounds was relatively low
(OR≈1.5).
An important and unexpected finding came from the

same collaborative group who analysed more than 5000
HPV16 case control samples worldwide [7]. It was
shown that the HPV16 E7 sequence (98 amino acids)
leading to cervical cancer is virtually invariant compared
to high sequence variability in controls. This finding was
confirmed to be consistent across regions and ethnicity.
Of note, an earlier study has also suggested that the E7
sequence of HPV type 16 was less variable compared to
other high risk types (HPV31) [55]. Although to be con-
firmed, a strict conservation of E7 could represent a

promising highly specific biomarker and may also be
important for HPV-associated and for non-cervical
cancers.

HPV variant studies and head and neck cancers
HNC includes numerous tumours that generally share
strong associations with tobacco and alcohol consump-
tion [56]. HPV16 is generally accepted as a carcinogen
in tonsil and base of the tongue, but its implication in
other sites such as oral cavity, larynx or even in oropha-
ryngeal tissues outside the Waldeyer’s ring is at most a
weak one [57, 58]. It is nonetheless conceivable that
many non-tonsillar HNC are falsely classified as HPV-
positive or are actually misclassified tonsillar or oropha-
ryngeal cancers (OPC), as characterisation of the true
site of origin is often difficult due to fast local extension
and unclear anatomical boundaries.
HPV-induced OPCs involve both genders, although

with higher incidence in men compared to women [59].
This sex-ratio is mainly explained by the higher HPV
transmission for vaginal-oral rather than penile-oral sex-
ual intercourse. Saunders et al. recently showed that risk
of OPC was higher in women having sex with women
compared with heterosexual women, although this asso-
ciation was not found in men having sex with men, in
agreement with a higher risk of HPV transmission by va-
ginal- vs. penile-oral sex [60]. The lower risk of HPV-
induced OPC observed in women could also be partly
explained by the higher immunity acquired by women
due to more frequent exposure to HPV in the genital
mucosa and by a still little understood role of the com-
bined exposure to HPV and tobacco that is generally
stronger in men than women [59]. As for cervical can-
cer, the presence of other risk factors and host-
characteristics should be considered in HPV variant
studies of HNC.
Few studies reporting HPV16 variants in HNC are

available (Table 1), including on the distribution of HPV
variant lineages [61–67], T350G [61, 66, 68, 69] and
other non-lineage-specific variants [61, 66, 67, 70].
These studies resemble early studies of cervical cancer
in being mere descriptions of variant prevalence in small
populations from North America and Europe. Some of
these studies did not present data separately for oropha-
ryngeal and other head and neck sites, and the definition
of HPV-induced HNC is variable, using frequently only
HPV-DNA detection or p16-positivity. These major lim-
itations prevented us from any interpretation, thus our
report regarding those studies remains descriptive.
In an early study on the role of HPV in HNC, Gillison

et al. provided data on prevalence of HPV variant line-
ages, T350G and other non-lineage-specific variants
among 52 HPV16-positive HNC from the USA [67].
The observed distribution of HPV variants was judged
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similar to that in a contemporary study of cervical can-
cers in North America. In a comprehensive study on
oral HPV infection before and after treatment, Agrawal
et al. reported HPV variant lineage distribution as well
as T350G and T131G in patients diagnosed with HPV-
induced HNC in the USA. In the latter study, oral rinses
were also collected and E6 sequence identity was com-
pared with the tumour (concordant in 10/11) [61].
Blakaj et al. have evaluated the association between

variant lineages and HNC disease stage, hypothesising
differential variant distribution in higher TNM and N+
staged tumours [65]. Barbieri et al. have also compared
clinical stage according to HPV variant lineages in 51
OPC cases from Italy but failed to detect any association
[63]. Unexpectedly in this study, African lineage was de-
tected in 10 out of 51 OPC. In Hassani et al., frequency
of T350G was reported in 10 HPV16-positive tonsillar
cancer and 3 HPV-positive tonsillitis specimens [69].
The same team had also previously compared distribu-
tion of HPV variant lineages and non-lineage-specific
variants in Japan, Pakistan and Columbia in oral cavity
and oesophageal cancer, but not in OPC [71].
One notable study compared E6 variants A131G

(R10G) and T350G in 108 tonsillar and cervical cancers
in Swedish patients [66]. In this study, a significantly
higher representation of A131G was reported in tonsil-
lar cancer (21/108) compared to cervical samples (2/51)
and cervical cancer (0/52). The role of A131G is not
clearly established but has been linked to p53 binding
and degradation [72]. Of note, among other findings,
presence of A131G variant was not associated with
disease-free survival and T350G variant was common
in tonsillar cancer (45%), cervical cancer (31%) and
cervical samples (29%).

Challenges and perspectives in studying HPV variants in
head and neck cancers
Critical differences between genital and upper aerodiges-
tive tracts need to be underlined [73, 74], implying spe-
cific challenges in research on HPV variants. Cervical
cancer is nearly always caused by HPV and, worldwide,
it is a much more frequent cancer than HPV-induced
HNC [2]. Also importantly, the collection of cervical
samples at different steps of carcinogenesis is relatively
easy for anatomical reasons and the long going practice
of screening around the world. In the cervix, it is thus
possible not only to analyse cancer cases but also longi-
tudinal data at the individual level to evaluate the risk of
persistent infection or progression to precancer/cancer
associated with specific HPV variants.
The major challenge for the head and neck consists in

the lack of characterisation of the carcinogenetic steps
from normal tissue to cancer. Although few studies have
attempted to collect precancerous lesions in non-
cancerous patients using cytology from in vivo [75–77]
or ex vivo [78] tonsillar brushings, none were successful.
There is however a clue that a precancerous state exists,
and long before the diagnosis of cancer. Two longitu-
dinal studies evaluating HPV16 serology reported not
only a high specificity but most importantly that in OPC
cases, HPV16 seropositivity could be detected more than
10 years prior to diagnosis [79, 80]. Yet the suspected
precancerous lesions are hardly identifiable most prob-
ably because HPV-induced tonsillar cancer is believed to
arise from the depth of the crypts and is hence challen-
ging to sample [78].
An additional critical challenge exists when trying to

assess whether certain HPV variants show differential
risk of persistent infection. Indeed sampling non-

Table 1 Studies on HPV16 variants in head and neck cancers

Study Country N HPV16 + samples Seq. Variant lineage (n) Non lineage
specific variants (n)

Gillison 2000 [67] USA 52 HNC E6 39 Eur; 9 Asian;
2 NA; 1 Afr-1

20 T350G 6 A131G

Hoffmann 2004 [70] DE 21 HNC (5 OPC) E6/E7 8 T350G (2 in OPC)
7 A131G (1 in OPC)

Badaracco 2007 [62] IT 13 HNC (5 TC) L1 9 Eur 2 Af-2; 1 AA

Agrawal 2008 [61] USA 14 HNC E6 13 Eur 1 As 3 T350G

Boscolo Rizzo 2009 [68] IT 8 HNC (4 OPC) E6 5 T350G

Blakaj 2012 [65] USA 43 HNC (28 OPC) E6 31 Eur 7 AA; 3 Af

Du 2012 [66] SW 108 TC E6 51(/55) EUR 43 T350G 21 A131G

Barbieri 2014 [63] IT 51 OPC L1 41 Eur 10 Af

Hassani 2015 [69] JP 10 TC E6 8 T350G
(1/3 T350G in tonsillitis)

Betiol 2016 [64] BR 21 HNC (3 OPC) E6 12 Eur 9 AA or NA1

Abbreviations: HNC Head and neck cancer, OPC Oropharyngeal cancer
Countries: BRBrazil, DE Germany, IT Italia, JP, Japan, SW Sweden
HPV variant lineages: EUR European, A Asian, AA Asian American, NA North American, Af African
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cancerous tonsillar or oropharyngeal tissue to detect
HPV infection is problematic. All sampling methods
are imperfect due to specific limitations [81, 82]: evalu-
ation of frozen or paraffin biopsies suffers from a lack
of exhaustiveness; although more representative than a
biopsy; oropharyngeal brushing hardly permits sam-
pling inside the crypt; rinse/gargle does not inform on
what tissue is evaluated and gargle can be impossible to
some patients due to laryngeal spasm in addition to the
uncertainty that even a proper gargle can detect an
infection inside a crypt. We recently showed that conc-
ordance between HPV detection using rinse/gargle, tonsil
ex vivo brushing and frozen biopsies is critically low
[81, 82]. Accordingly, studies of the natural history of
HPV in the oropharynx have not been possible so far.
Yet case-case comparisons including other HPV-

induced cancer sites should be informative [11]. The
greater predominance of HPV16 in OPC (around 90%)
compared to the cervix (50/60%) suggests a different
host-viral interaction in the two sites. It is therefore
credible that some HPV variants without influence in
cervical pathogenesis could play a role in the orophar-
ynx, as specific sublineages are associated with specific
histological subtypes [6], some HPV variants could be
more prone to infect or to trigger progression to cancer
in oropharyngeal compared to cervical tissue. Likewise,
although there is no data so far suggesting that HPV var-
iants could have an effect on therapeutic response, an
influence is possible, for instance through modification
of the tumour microenvironment.
There is so far no indication that HPV variant research

in HNC would be directly clinically relevant. However,
such research could be useful to disentangle other un-
answered questions including HPV genome integration
[83–85], the identification of a robust method to deter-
mine a truly HPV-driven HNC or those with the best
prognosis [58, 86, 87], or a possible distinct pathogenesis
in an immunosuppressed population. Of note, the use of
complete genome sequencing obviously allows finer def-
inition of persistent vs. cleared infection in longitudinal
studies [88] or finer confirmation of the concordance of
HPV detection in rinse/gargles with HPV-HNC tissue
[61]. Other illustrations of HPV variant studies included
evaluation of their influence on HPV serological re-
sponse [89] or on HPV vaccine efficacy [90]. Regarding
non-cancerous HPV-related conditions, such as recur-
rent papillomatosis or genital warts, yet unanswered
questions might also take advantage of HPV variant
studies [91–93].

Conclusion
In conclusion, our review suggests that the most recent
HPV variant studies in cervical cancer are of importance
in planning the evaluation of HPV heterogeneity in

other HPV-associated cancer including HNC. HPV vari-
ant studies using recent sequencing technology have
generated key data that should help better understand
the carcinogenicity of HPV at a molecular level. If these
successful studies have confirmed that minor changes in
the HPV genome can have a major influence on carcino-
genesis, they also highlight the crucial need for inter-
national collaborative efforts to allow appropriate in
depth analyses.
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