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Abstract

Background: The decrease in human papillomavirus (HPV) vaccine prices may allow upscale already started
vaccination programmes but the advantages of different options are unclear.

Methods: Using a mathematical model of HPV16 and 18 transmission and data on vaccination coverage from Italy,
we compared 3 options to upscale an already started programme targeting 11-year old girls (coverage 65%): a)
coverage improvement (from 65% to 90%); b) addition of 11-year-old boys (coverage 65%); or c) 1-year catch-up
of older girls (coverage 50%).

Results: The reduction of cervical HPV16/18 infection as compared to no vaccination (i.e. effectiveness against
HPV16/18) increased from 76% to 98% with coverage improvement in girls and to 90% with the addition of boys.
With higher coverage in girls, HPV16/18 infection cumulative probability by age 35 decreased from 25% to 8% with
a 38% increase in vaccine number. The addition of boys decreased the cumulative probability to 18% with a 100%
increase in the number of vaccinees. For any coverage in girls, the number of vaccinees to prevent 1 woman from
being infected by HPV16/18 by age 35 was 1.5, whereas it was 2.7 for the addition of boys. Catch-up of older girls
only moved forward the vaccination effectiveness by 2–5 years.

Conclusions: Increasing vaccination coverage among girls is the most effective option for decreasing HPV16/18. If
not achievable, vaccinating boys is justifiable if vaccine cost has at least halved, because this option would almost
double the number of vaccinees.
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Introduction
The debate on the best target population of human
papillomavirus (HPV) vaccination programmes in high-
income countries has been renewed by the decision to
vaccinate boys in Australia [1,2] and the similar recom-
mendations from the United States [3] and by the rele-
vance of non-cervical HPV-related cancers [4]. A key issue
is whether an upscale of existing vaccination programmes
should aim for increased vaccination of girls and young
women or extend vaccination programme to boys [5]. The
steady decrease in HPV vaccine prices makes an upscale
attractive also for those high-income countries which ini-
tially targeted only one or few birth cohorts of girls or
achieved low coverage.
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The impact of vaccinating adolescent girls (and in
some cases also boys) with or without catch-up of older
girls has been explored using mathematical models
[6-12]. The main aim of these studies was to estimate
the incremental cost-effectiveness ratio of different vac-
cination options [7]. However, cost-effectiveness models
are sensitive to the broad variations in the cost of HPV
vaccines in different countries and depend on a variety
of assumptions regarding incidence, incubation time and
incidence rates of the various HPV-associated diseases.
In the present paper, we assess, as an example, differ-

ent upscaling options in the vaccination programme that
started in 2008 in Italy assuming that a fixed amount of
resources has been allocated to HPV prevention. Our
aim is to compare the effectiveness for HPV infection
control of different options for an upscaled vaccination
programme, in relation to the effectiveness of the exist-
ing baseline programme. We focused on viral endpoints
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(i.e. HPV16/18 cervical infections), which, though not
clinically relevant per se, will be the earliest to be moni-
tored. Three options were explored: a) coverage im-
provement of initially targeted girls; b) catch-up of a few
additional female birth cohorts; and c) the addition of
boys.

Methods
The transmission dynamic model of HPV infection used
in the present paper has been extensively described else-
where [13]. Briefly, it is a population-based single-type
model, which accounts for susceptible, HPV-infected and
immune men and women. Each model’s output was fitted
to the age-specific (25–29 to 55–59 age group) prevalence
curves of cervical HPV16 and 18 infection that were ob-
served in a large (94,370 women) population-based ran-
domized controlled trial of cervical cancer screening (the
New Technologies for Cervical Cancer, NTCC, trial) [14].
A total of 100,000 sets of parameter values were generated
by independently sampling a uniform distribution for each
parameter within a pre-specified range of values [15]. Each
set of values was used to generate a model-based age-
specific prevalence curve. Finally, the fit of each model’s
output to the above-mentioned age-specific prevalence of
HPV16 and 18 was assessed by calculating binomial log-
likelihood. We selected the 100 model-generated curves
that best fitted the observed data and among them we
computed, for each parameter, the median and interquar-
tile range (IQR) values as estimates of the most credible
parameter values [13]. In order to account for the uncer-
tainty of model-based estimates, the above-mentioned 100
best fitting curves for HPV16 and 18 were used to project
the consequences of introducing different vaccination
options.
HPV16 and 18 cervical infections were modelled separ-

ately as independent infections [16-18]. Clearance of infec-
tion was modelled assuming that it would be followed by
natural type-specific immune protection in a fraction of
women (i.e. 20% and 43%, for HPV16 and 18, respect-
ively). The prevalence of HPV16 and 18 in the observed
data was 2.4% and 0.7%, respectively, while 5% of HPV16
and/or HPV18 infected women were co-infected [13]. We
eventually reported the impact of vaccination against the
combination of the two types (HPV16/18). Vaccine effi-
cacy against HPV16 and 18 infections among women was
assumed to be 95% [19,20]. Vaccine efficacy among men
was assumed to be 79% against HPV16 infection [21], and
95% against HPV18 infection [21]. The base case of an
existing vaccination programme was derived from the Ital-
ian organized vaccination programme [22,23], i.e., initial
vaccination of 11-year-old girls in 2008 (hereafter referred
to as baseline vaccination) and a coverage of 65% [24]
(Figure 1). We assessed the effectiveness of changes in the
vaccination programme five years after its inception
(2013) using three not mutually exclusive options: a) in-
creasing 11-year-old girls’ coverage to 90% (the target ini-
tially set by Italian public health authorities); b) a 1-year
catch-up campaign (national coverage assumed as 50%)
that targets 17-to-24-year-old women; and c) vaccination
of 11-year-old boys, with 65% coverage. As for sensitivity
analyses, we repeated the projections increasing up to 65%
coverage of catch-up and decreasing the coverage of 11-
year-old boys down to 50%.
For each simulated upscale option, we present: 1) the

effectiveness of vaccination as a function of calendar
year after vaccination; and 2) the percent cumulative
probability (CumProb) of HPV16/18 cervical infections
by age 35 years according to birth cohort. Effectiveness
was defined as the relative reduction in prevalence of
HPV16/18 infections in women aged ≤35 years as com-
pared to that in the absence of vaccination. Finally, we
directly compared the different vaccination options for a
limited number of birth-cohorts by calculating the num-
ber of subjects needed to vaccinate (NNV) in order to
prevent a woman from being infected by HPV16/18 by
age 35. The NNV was calculated assuming that birth co-
horts were of the same size and included the same num-
ber of boys and girls. The corresponding number of
vaccine doses may vary depending on the recommended
vaccination schedule.

Results
The improvement of vaccination coverage from 65% to
90% in 11-year-old girls increased the effectiveness against
cervical HPV16/18 infections within 30 years since vaccin-
ation introduction from 76% to 98% (Figure 2). As a result
of herd immunity (i.e. indirect protection of unvaccinated
individuals) [25], effectiveness against HPV16/18 exceeded
by 14 and 13 percentage points the one expected if vaccin-
ation had only protected vaccinated women (62% effect-
iveness at 65% coverage and 86% at 90% coverage).
The addition of 11-year-old boys to the vaccination of

11-year-old girls would raise maximal effectiveness to
90%. For both vaccinating boys and increasing coverage,
the maximal effectiveness was 99% (Figure 2). The contri-
bution of herd-immunity to vaccination effectiveness was
28 and 14 percentage points, respectively. Lower coverage
of boys (i.e. 50%) would result in lower effectiveness.
Catch-up of 17-to-24 year-old women did not affect

the long-term effectiveness but it substantially moved it
forward compared to baseline vaccination (Figure 3).
The anticipation of effectiveness increased, according
to a diminishing return pattern, as a function of the
number of birth cohorts included in catch-up. For
example, catch-up of 17-to-24 year-old young women
moved forward mid-maximal effectiveness (38%, i.e.,
half of the effectiveness expected within 30 years as
reported above) against HPV16/18 cervical infections



Figure 1 Timing of the HPV vaccination programme as assumed for modelling purposes. Legend: Baseline 11-year-old girl vaccination
started in 2008; new options (catch-up of 17-to-24-year-old women; increased 11-year-old girls’ coverage; 11-year-old boys’ vaccination) started in
year 2013. HPV: human papillomavirus.
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by 2 years. Increasing catch-up coverage to 65% would
anticipate effectiveness by about 5 years (data not
shown). In no case did vaccination of adolescent boys
produce a move forward of programme effectiveness,
regardless of girls’ coverage.
Table 1 shows the median and IQR estimates of HPV16/

18 CumProb by age 35, by birth cohort and upscale option.
In absence of any HPV vaccination, the estimated CumProb
was 67.5% (IQR: 56.9 – 75.1). Under the assumption of
baseline vaccination of 11-year-old girls, starting with girls
born in 1997 and with 65% coverage, CumProb estimates
decreased down to 24.9% (IQR: 20.0 – 30.7) among girls
belonging to the vaccinated birth cohorts. As the number
of birth cohorts vaccinated increased, also the reduction in
HPV16/18 CumProb by age 35 slightly increased.
Catch-up of older girls would lower the cumulative

probability of HPV16/18 infections among women not ini-
tially targeted (Table 1). Targeting 17-to-18-year-old girls
would reduce HPV16/18 CumProb by age 35 among
1996-born women to 31.7% (IQR: 25.1 – 38.4), but not
among 1993-born women. However, the addition of more
than four birth cohorts would not appreciably improve
HPV16/18 CumProb (Table 1) because of the large frac-
tion of young women sexually active above age 20.
In absence of catch-up, herd-immunity would also

partially protect the last unvaccinated birth cohort (born
in 1996), with an expected cumulative probability of
HPV16/18 cervical infections of 43.8% (IQR: 35.9 –
51.4). The herd-immunity is expected to be lower among
older birth cohorts as a consequence of decrease in
sexual mixing with male partners of the vaccinated co-
horts. For example, HPV16/18 CumProb among women
born in 1993 would overlap the one expected in absence
of vaccination (64.9%; IQR: 54.9 – 72.8).
The reduction of HPV16/18 CumProb by age 35 accord-

ing to a) increase in 11-year-old girls’ coverage to 90%; or
b) introduction of vaccination of 11-year-old boys in 2013
is shown in Table 1. Reduction was observed in cohorts
born after 1997 in both options. The improvement of 11-
year-old girls coverage reduced HPV16/18 CumProb to
8.1% (IQR: 6.0 – 10.2) in 2002-born women. The addition
of boys without improving girls’ coverage decreased
HPV16/18 CumProb to 17.6% (IQR: 14.1 – 21.5) in the
same cohort.
Figure 4 shows the decrease in HPV16/18 CumProb

by age 35 among 2002-born women according to differ-
ent upscale options. Horizontal axis shows the increase
in vaccinated individuals relative to 65% coverage of
11-year-old girls only. The improvement of coverage
of 11-year-old girls would reduce HPV16/18 CumProb
from 25% to 8% and increase vaccinees by 38%. Vac-
cination of 11-year-old boys (without change in girl
coverage) would lead to a reduction in HPV16/18 Cum-
Prob from 25% to 18% and increase vaccinees by 100%.
Therefore, assuming a fixed amount of resources allocated
to the vaccination programme, the improved coverage
option would be acceptable if the vaccination cost per
capita would be reduced by at least 28%, while the boys’
vaccination option would be acceptable if costs reduction
would be at least 50%.



Figure 2 Effectiveness (%) of vaccination against HPV16/18 infection, by coverage. Legend: Effectiveness assessed among women ≤35 years,
by 11-year-old girls’ coverage and addition of boys. HPV: human papillomavirus.
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A direct comparison between vaccination options, re-
stricted to the 10 first targeted birth cohorts, showed
that the NNV was 1.5 under both the baseline and the
improved girls’ coverage option. NNV was 2.7 if boys
were also vaccinated (Table 2).

Discussion
Our results show that improving vaccination coverage in
adolescent girls is the most effective upscale option for
decreasing the burden of HPV16/18 cervical infections
in women. The addition of adolescent boys would ap-
proximately double NNV compared to girls’ vaccination
but it can be considered useful and cost-neutral if the
coverage of girls cannot be further improved and the
cost per vaccination has at least halved.
A 1-year catch-up campaign of a few cohorts of older

girls and younger women would move forward by about
3-to-5 years the impact of vaccination among targeted
cohorts regardless of the vaccination strategy adopted
for adolescent girls and boys. However, due to the higher
probability of previous exposure to HPV16/18 infection,
additional catch-up of older birth-cohorts would follow
a diminishing return pattern. The catch-up of young
women and improvement of vaccination coverage of 11-
year-old adolescents would essentially benefit different
birth-cohorts, i.e. those born in 2001 or earlier and after
2001, respectively.
Coverage of 90% of 11-year-old girls would increase the

number of vaccinated adolescents by about 40% and de-
crease to 8% the HPV16/18 CumProb by age 35. The
addition of 11-year-old boys with 65% coverage would
double the PNN and decrease to 18% HVP16/18 Cum-
Prob by age 35 (Figure 4). While the improvement of girls’
coverage is clearly the most cost-effective upscale option
(Table 2), the feasibility of achieving the improved cover-
age is uncertain. For example, a recent study from the US,
where less than half of adolescent girls were fully vacci-
nated, suggested that fostering physician recommendation



Figure 3 Effectiveness (%) of vaccination against HPV16/18 infection, by catch-up. Legend: Effectiveness assessed among women ≤35 years,
by catch-up of 17-to-24 year-old women. HPV: human papillomavirus.
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for vaccination may not be sufficient to increase HPV vac-
cine uptake in front of increasing families’ concerns about
vaccine safety [26].
However, the cost of coverage improvement varies by

setting, e.g., more expensive in on-demand programmes
than in school- and/or by population-based invitations.
In Italy, for instance, vaccination against hepatitis B

virus included catch-up of 12-year-old adolescents in ad
hoc public clinics by active invitation between 1991 and
2003. Adolescent coverage reached 90% in most Italian
regions [27]. Many conditions have, however, changed in
the last decades including the current voluntariness of
vaccinations, population’s attitude towards vaccines,
and, in the case of HPV vaccination, the existence of
screening as an alternative approach to cervical can-
cer prevention [28].
Table 1 Cumulative probability (%) of HPV16/18 infection by

Median
cumulative
probability

[IQR] without
vaccination

Year
of birth

Girls
vaccinated
at age 11

Coverage of 11-year-old gi

Number of cohorts of g
in 2013 (vaccin

None Two (17–18)

1993 No 64.9 [54.9 – 72.8] 63.8 [53.9 – 71.8]

1996 No 43.8 [35.9 – 51.4] 31.7 [25.1 – 38.4]

67.5 [56.9 – 75.1] 1997 Yes 28.0 [22.6 – 34.1] 26.7 [21.6 – 32.7]

1998 Yes 26.9 [21.9 – 32.9] 25.9 [21.1 – 31.8]

2002 Yes 24.9 [20.0 – 30.7] 24.6 [19.7 – 30.6]
aWe reported median estimates and corresponding interquartile range (IQR), accord
catch–up; cUpscale option: girls coverage improvement; dUpscale option: addition o
catch–up (year 2013) after vaccination programme start (year 2008).
HPV: human papillomavirus.
Our study shows that the different vaccination options
also provide indirect protection against HPV16/18 to
unvaccinated women. This indirect protection results
from the decline in HPV transmission in sexual network
that includes a high proportion of vaccinated women.
Vaccinated women can indirectly protect the unvaccin-
ated women by sharing sexual partners, while vaccinated
boys directly prevent the transmission of HPV16/18 to
unvaccinated women.
Our study has strengths and limitations. We focused

on viral endpoints, although these are not clinically rele-
vant outcomes, as they represent the earliest possible
endpoints for monitoring vaccination programmes and
the accuracy of model-based projections. We concen-
trated on HPV16/18 infections as information about nat-
ural history and vaccine cross-protection against other
age 35a, by birth cohort and vaccination upscale option

rls 65%, boys unvaccinatedb Coverage of 11-year–old girls

irls targeted by catch–up
ation age range)e

90%c 65%d

Four (17–20) Eight (17–24) Boys
unvaccinatedc

Boys vaccinated
at age 11d

45.9 [36.5 – 54.3] 45.3 [36.1 – 53.7] 64.5 [54.4 – 72.5] 64.4 [54.3 – 72.4]

31.0 [24.4 – 37.5] 30.7 [24.2 – 37.2] 42.9 [35.1 – 50.4] 42.8 [35.1 – 50.4]

26.2 [21.2 – 32.0] 26.0 [20.9 – 31.8] 27.2 [21.8 – 33.0] 27.1 [21.8 – 32.9]

25.5 [20.7 – 31.5] 25.3 [20.5 – 31.3] 25.8 [20.7 – 31.5] 25.3 [20.6 – 31.0]

24.5 [19.5 – 30.4] 24.3 [19.4 – 30.2] 8.1 [6.0 – 10.2] 17.6 [14.1 – 21.5]

ing to year of birth cohort and catch-up strategy; bUpscale option: 1-year
f boys; eGirls aged 12–16 not included due to 5-year delay in introducing



Figure 4 Decrease in the cumulative probability (%) of HPV16/18 infection by age 35. Legend: We report median and corresponding
interquartile range (vertical bars), in the 2002-born women according to increase (%) in vaccinated individuals. Levels of vaccination coverage of
11-year-old girls and boys are also reported above or below the curves. Reference: baseline vaccination programme (11-year-old girls vaccination
only: coverage 65%; no catch-up vaccination). HPV: human papillomavirus.
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high-risk HPV types is limited. Restriction to virological
endpoints up to age 35 minimizes the potential impact
of different cervical screening practice on the interpret-
ation of our findings [29]. Furthermore, we avoided the
uncertainties inherent in estimating the cost and quality
of life associated with the various HPV-associated dis-
eases in men and women.
The generalizability of estimates based on dynamic

model projection is largely dependent on the quality of as-
sumptions of the parameters that govern natural history
and sexual circulation of HPV infection. To test the valid-
ity of our sets of parameter values, we independently cali-
brated our Italian data-based model to Swedish data.
Allowing for demographic and behavioural differences be-
tween the two countries and populations, the sets of pa-
rameters that regulate the natural history of HPV16 and
18 infections were shown to be consistent, suggesting that
our projections are robust [13]. By contrast, our estimates,
in particular for catch-up, are unlikely to satisfactorily
apply to countries with significantly different patterns of
sexual behaviours of adolescents and young women. Ef-
fectiveness of catch-up in our model was influenced by
Table 2 Number of subjects needed to vaccinate (NNV) to
prevent one woman from being infected by human
papillomavirus (HPV) 16/18 by age 35

Vaccination option NNV Ratio

11-year-old girls only, coverage 65 1.5 Reference category

11-year-old girls only, coverage 90% 1.5 1.0

11-year-old girls and boys, coverage 65% 2.7 1.8
the Italian vaccination programme, in which HPV vaccin-
ation had been nearly restricted to 11-year-old girls for the
first 5 years. Our findings, therefore, may be of particular
interest for programmes with a similar initial set up. By
contrast, the comparison of improving coverage of adoles-
cent girls and/or vaccinating also boys is of interest to
most high-income countries.
Our study only included estimates of vaccination benefit

in women, although the reduction in incidence of HPV in-
fection and HPV-associated cancers in men is an add-
itional benefit of vaccination [30]. However, much fewer
studies have addressed the natural history of HPV infec-
tions among men than women [31] and existing data are
still insufficient to accurately calibrate a dynamic model
that will allow reliable projections for males.
Due to the rapidly changing price of HPV vaccination,

we chose not to include the monetary costs of purchas-
ing and delivering HPV vaccines. However, the percent
increase in vaccinated individuals in each vaccination
option, as well as the NNV to prevent one woman
HPV16 or 18 infected by age 35 should be easily applic-
able to country-specific vaccination costs in any given
year and recommended number of vaccine doses [32].
NNV according to different options is especially useful
as a guide to cost-effectiveness. If NNV doubles, as it is
the case for boys, an upscale will be cost-neutral if vac-
cine cost had at least halved.

Abbreviations
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range; NNV: Number needed to vaccinate; NTCC: New technologies for
cervical cancer.
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