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Abstract 

Laryngeal cancer ranks as the second most prevalent upper airway malignancy, following Lung cancer. Although 
some progress has been made in managing laryngeal cancer, the 5-year survival rate is disappointing. The gradual 
increase in the incidence of second primary tumors (SPTs) plays a crucial role in determining survival outcomes dur-
ing long-term follow-up, and the esophagus was the most common site with a worse prognosis. In clinical practice, 
the treatment of esophageal second primary tumors (ESPT) in patients with laryngeal squamous cell carcinoma 
(LSCC) has always been challenging. For patients with synchronous tumors, several treatment modalities, such 
as radiotherapy, chemotherapy and potentially curative surgery are necessary but are typically poorly tolerated. 
Secondary cancer therapy options for metachronous patients are always constrained by index cancer treatment 
indications. Therefore, understanding the clonal origin of the second primary tumor may be an important issue 
in the treatment of patients. LSCC cells demonstrate genetic instability because of two distinct aetiologies (human 
papillomavirus (HPV)-negative and HPV-positive) disease. Various etiologies exhibit distinct oncogenic mechanisms, 
which subsequently impact the tissue microenvironment. The condition of the tissue microenvironment plays a cru-
cial role in determining the destiny and clonal makeup of mutant cells during the initial stages of tumorigenesis. This 
review focuses on the genetic advances of LSCC, the current research status of SPT, and the influence of key carcino-
genesis of HPV-positive and HPV-negative LSCC on clonal evolution of ESPT cells. The objective is to gain a compre-
hensive understanding of the molecular basis underlying the clonal origins of SPT, thereby offering novel perspectives 
for future investigations in this field.
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Background
Globally, the number of incidence cases of laryngeal 
cancer climbed from 132 700 in 1990 to 210 600 in 2017 
[1]. In 2018, it was anticipated that 177 000 instances 
of laryngeal cancer and 95 000 related deaths occurred 
worldwide [2]. Lin et  al. [3] predict the age-standard-
ized incidence of laryngeal cancer from 2019 to 2035, 
and despite its projected decline, the estimated absolute 
numbers are still expected to rise, and laryngeal can-
cer remains a serious health issue globally. Addition-
ally, a growing number of SPTs have been diagnosed as 
a result of improved diagnostic techniques, which have 
the potential to progress into various types of cancer, 
including multicentric cancers affecting the lung, esopha-
gus, and head and neck. Notably, in patients with head 
and neck cancer, SPTs contribute to a considerable pro-
portion of mortality, accounting for approximately one-
fourth to one-third of deaths in this patient population 
[4]. The prognosis of esophageal cancer is poorer in these 
SPTs than in other sites of the upper gastrointestinal tract 
[5]. Furthermore, ESPT is characterized by flat lesions 
that are readily missed with high-resolution  white  light 
endoscopy [6]. Higher prevalence of ESPT, and it has 
been discovered that the incidence of ESPT in patients 
with head and neck squamous cell carcinoma (HNSCC) 
in Asia reached 17.7% (358 of 2627, 95% CI 12.7–22.7), 
of which 3.4% (19 of 474, 95% CI 1.8–5.4) are ESPT in 
patients with LSCC [7]. Furthermore, it was observed 
that patients diagnosed with HNSCC accompanied by 
SPTs exhibited a significantly lower 15-year survival 
rate compared to those without SPTs, with rates of 22% 
and 54% respectively. Additionally, patients with SPTs 
experienced a particularly unfavorable prognosis, as evi-
denced by a 5-year survival rate of only 6% for ESPT, in 
contrast to the 25% survival rate observed in patients 
with all types of SPTs [8]. Another study corroborated 
these findings, demonstrating that patients with LSCC 

who developed SPTs had lower 5-year (68% vs. 76%) and 
10-year (26% vs. 57%) overall survival rates, with statis-
tical significance (P = 0.003) [9]. Consequently, the pres-
ence of ESPT significantly impacts the survival outcomes 
of patients diagnosed with LSCC.

Successful treatment of second primary tumors in 
patients with LSCC is a matter of clinical significance. 
Another aspect extensively debated in scholarly literature 
is the clonality of second and index tumors. Cui et al. [10]  
used loss of heterozygosity (LOH) analysis to reveal that 
recurrent LSCC is of monoclonal origin, but Sunpawer-
avong et al. [11] used a genome-wide SNP array to find 
a highly inconsistent LOH pattern between LSCC and 
ESPT, thereby suggesting that ESPT belongs to an inde-
pendent clonal evolution. Presently, the clonal relation-
ship between LSCC and ESPT has not yet been clearly 
stated. Furthermore, apart from the evident genomic dis-
parities between HPV-positive and HPV-negative LSCC 
(Table  1), disparities in crucial oncogenic mechanisms 
should be taken into account.  Molecular modifications 
play a significant role in the emergence and evolution of 
tumor cell clones. The pathogenesis of LSCC is different, 
and the occurrence and development of the disease are 
also different. Consequently, it is imperative to discuss 
the clonal relationship between LSCC and ESPT by con-
sidering the molecular basis of their distinct etiologies.

Genetic progression of LSCC
Squamous cell carcinomas are one of the most common 
solid cancers involving many anatomical sites in humans, 
exhibiting a propensity for metastasis and dissemination 
and constituting a leading cause of mortality worldwide 
[12]. Histologically, the progression of invasive squamous 
cell carcinoma follows a sequential pattern, initiating 
with the proliferation of epithelial cells, succeeded by a 
range of dysplasia from mild to severe, then progress-
ing to in  situ carcinoma, and ultimately culminating 

Table 1 Major differences between LSCC by HPV status

HPV-positive LSCC HPV-negative LSCC

Risk factors High-risk sexual practices Tobacco and alcohol

P53 pathway disturbances Degradation of wt p53 by E6 TP53 mutations, 17p13LOH

Mutational burden Low High

Rb pathway disturbances Degradation of wt Rb by E7 p16INK4A-promoter hypermethylation, 9p21 LOH

immune microenvironment Hot Cold

Factors mediating cellular transformation E6 and E7 hr-HPV oncoproteins
Genomic rearrangements induced 
by viral genome integration

Hypermutational status and chromosomal instability 
induced mainly by alcohol and tobacco carcinogens

Prognosis: 5-year survival rates More favorable Less favorable

Relative responsiveness to chemoradiation Better Worse

Relative prognosis Improved Worse
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in invasive carcinoma [13]. The formation of tumors is 
widely acknowledged as a highly intricate process that 
encompasses numerous genes. Tumor suppressor genes 
and oncogenes are altered genetically and epigenetically 
during the transition from normal cells to cancer cells 
[14]. Additionally, tumors usually occur in the precancer-
ous areas of genetically altered cells. The continued pres-
ence of these tumor fields following therapy presents a 
significant difficulty, as it heightens the likelihood of sec-
ond primary tumors and local recurrence, both of which 
are significant contributors to mortality [15]. Microsatel-
lite instability is the basis of a unique tumorigenic path-
way. Recent investigations have revealed that diminished 
expression of mismatch DNA repair genes heightens the 
susceptibility to microsatellite instability, a phenomenon 
frequently observed in head and neck cancer [16]. LSCC 
cells demonstrate genetic instability and commonly 
manifest a diverse array of chromosomal modifications, 
including translocations, amplifications, and deletions. 
Although LOH analysis and array comparative genomic 
hybridization (aCGH) have identified numerous chromo-
somal regions, the majority of genes within these regions 
remain unidentified.

Frequent allelic deletions were observed at chromo-
somal positions 3p, 4q, 9p  (p16INK4a), 11q, 13q (Rb), 14q 
and 17p (TP53) in LSCC patients [10]. Additionally, 
LOH analysis provides valuable insights into the identi-
fication and characterization of tumor suppressor genes 
and their cloning process [17]. It is worth noting that 
microsatellite DNA can be inherited across generations. 
The utilization of LOH analysis can be beneficial in dis-
tinguishing between synchronous primary ovarian and 
endometrial malignancies and single metastatic tumors 
[18]. Zhu et al. [19] employed LOH analysis to show that 
two nearby hepatocellular carcinomas looked to be intra-
hepatic metastases of two original tumors. Recently, Cui 
et  al. [10] used LOH to demonstrate that primary and 
recurrent LSCC in the same patient have the same allelic 
deletion pattern and finally concluded that both types of 
tumors originated from the same clone. LOH analysis 
provides important clues to the clonal origin of tumor 
cells.

Current research status of SPT
Most doctors currently adhere to the criteria established 
by Warren et  al. (1932) to define SPT: (a) each tumor 
must exhibit malignancy, (b) each tumor must be inde-
pendent, and (c) the possibility of metastasis from one 
tumor to another must be ruled out. In cases of simi-
lar histotypes, SPT was considered when the second 
tumor was more than 2 cm away from the index tumor 
or occurred more than three years after the index tumor. 
However, no agreement was reached on these matters. 

SPT can be divided into two groups: simultaneous SPT, 
where both are diagnosed that occur within six months 
of one another or at the same time; for metachronous 
SPT, where both are diagnosed more than six months 
apart. Most SPT is heterochronic and is detected at fol-
low-up after treatment of the first tumor [20]. In fact, 
SPT, as the name suggests, these tumors develop inde-
pendently of the primary tumor. However, genetic stud-
ies have revealed that in a certain proportion of cases, the 
two have a certain clonal relationship [21]. It was later 
suggested that the term “SPT” be assigned to a second 
tumor that develops completely independently. In cases 
where both tumors share the same clonal origin, they are 
referred to as “second field tumors” (SFT). Consequently, 
there exist three primary mechanisms through which 
SPT manifests: (1) Micrometastasis (cloning); (2) Aris-
ing from a shared oncogenic field (SFT-partial cloning); 
(3) Independent occurrences (true SPT-non-cloning) [22] 
(Fig.  1). It is imperative to establish this differentiation 
as the management of SPT currently poses a formidable 
clinical challenge.

An increasing body of literature has emerged regard-
ing SPTs, with a predominant emphasis on investigat-
ing their incidence, treatment, and prognosis. However, 
limited attention has been given to exploring the clonal 
relationship between primary tumors and SPTs. Various 
laboratory techniques, such as karyotyping, cytogenetic 
methods, TP53 mutations, X-chromosome inactiva-
tion, aCGH, LOH, and more recently, whole-genome or 
exome next-generation sequencing, have been proposed 
as means to evaluate this clonal relationship [23]. But 
mutations are cumulative, tend to change during can-
cer progression, and lack specificity, so the reliability 
of molecular techniques is in doubt. For instance, LOH 
analysis can only indicate the proliferation of monoclonal 
clones when multiple and consistent LOH is observed. 
Furthermore, the use of aCGH and X-chromosome inac-
tivation is not suitable for routine clinical practice, aCGH 
is costly and time-consuming, while X-chromosome 
inactivation is only applicable to female samples [24, 25]. 
mtDNA is considered to be an effective tool for evaluat-
ing the clonal relationship between primary tumors and 
SPTs, but it also has some limitations [26]. Clonal evo-
lution is a highly intricate phenomenon, and genomics 
serves as a potent tool for elucidating tumor evolution by 
enabling the assessment of clonal evolution across spatial 
and temporal dimensions [27]. One study used integrated 
multi-omics methodologies such as transcriptomics, 
whole genome sequencing, and immune cell receptor 
sequencing to investigate the impact of the spatial organ-
ization of the immunological microenvironment on the 
evolution of ovarian cancer clones [28]. Future research 
should focus on developing simpler and more precise 
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approaches for determining clonal origins, such as multi-
omics strategies, in order to better understand the evolu-
tionary mechanisms of cancer.

Hypothesis of field cancerization
Clinicopathological evidence serves as the established 
criterion for distinguishing distant metastases from SPT, 
but this approach is relatively subjective [29]. In 1953, 
Slaughter et al. introduced the concept of “field canceri-
zation” to explain the pathogenesis of SPT, and it has 
since undergone further development (Fig. 2). The term 
“field cancerization” has been extended to encompass 
various other organs, including the esophagus, orophar-
ynx, stomach, larynx, lungs, anus, colon, cervix, skin, and 
bladder. Therefore, this description effectively elucidates 
the theory of multifocal tumor origin. At present, there 
are two views on the “field cancerization” hypothesis: the 
first supports a monoclonal origin since “jumping lesions” 
are always present. That is, the tumor cells expand from 
the primary site to nearby sites. Although the extent of 
clonal expansion is unknown, some observations sug-
gest that this process may result in tumor cells extend-
ing well beyond the microscopic boundaries of the tumor 
mass. That surface migration of clonal cells may be wide-
spread even without obvious histopathological changes 
in the malignancy [30]. Specific genetic alterations occur 

throughout the airways when exposed to carcinogens, 
with one genetically altered cell producing a proliferat-
ing clone that grows into an expanding area of cancer and 
gradually replaces the normal mucosa. In this genetically 
altered area, accumulating other independent genetic 
alterations provides an additional growth advantage to 
the cell subpopulation. In the process, eventually, a sub-
clone evolves into aggressive cancer. This is an ongoing 
evolutionary process, and although they are genetically 
distinct, they share a common origin [21]. Conversely, 
the other explanation posits that mutations arise in many 
epithelial locations as a result of ongoing carcinogen 
exposure, resulting in multifocal carcinomas or lesions 
of independent origin [31]. As a result, the interpretation 
of the clonal relationship between SPT and index tumors 
based solely on “field cancerization” is divergent and 
requires further investigation.

The impact of clonal evolution
Key gene mutations
In the absence of HPV, an increased risk of SPTs was 
found [32]. Consuming alcohol and smoking are the two 
most significant risk factors for HPV-negative LSCC and 
esophageal squamous cell carcinoma (ESCC). These car-
cinogens can directly damage and mutate DNA, increas-
ing mutational burden, intercellular heterogeneity, and 

Fig. 1 The main mechanisms by which SPT occurs. Normal cells receive one (or more) genetic hits and produce a daughter cell with genetic 
alterations that gradually replace normal epithelial cells to form a tumor field. When the tumor field expands at the expense of normal epithelial 
cells, additional genetic alterations occur, prompting the tumor field to develop into obvious cancer and metastasize or the cancer cells to form 
a second tumor by submucosal spread or intraepithelial migration or to form a polyclone with additional induction
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driving mutations [33]. TP53 tumor suppressor muta-
tions have been shown to be the most common genetic 
variant and stable, well-distributed point mutation (exons 
5–8) in LSCC, rendering this mutation a significant pre-
dictor of treatment outcome and valuable for clonality 
assessment [34]. Histopathological studies of ESPT in 
patients with HPV-negative LSCC have identified small 
TP53 mutated plaques (less than 200 cells in diameter) 
that precede the expansion of cancer [35]. But Chen et al. 
[36] conducted mutation analysis of the TP53 core bind-
ing domain and found no clonal relationship between 
LSCC and ESPT. The mutation pattern observed in the 
P53 gene exhibits considerable variability, suggesting a 
polyclonal nature of transformation. It is important to 
note that tumor development is a multifaceted process, 
necessitating additional genetic alterations and a large 
number of stromal cells (inflammatory cells, immune 
cells, etc.) for the transformation of plaques into extended 
fields. P53 gene mutations and sustained loss of cell dif-
ferentiation, along with the entry of cells with damaged 
DNA into the S phase, lead to altered genetic character-
istics and chromosomal aberrations, promoting tumor 
development [37]. Furthermore, P53 is essential for the 
repair of DNA damage and the initiation of apoptosis. 
Consequently, the mutation of the TP53 gene observed 
in patients with LSCC, attributed to smoking, hinders the 
timely repair of DNA damage, resulting in the continuous 
proliferation of cells carrying genetic abnormalities. This 
uncontrolled proliferation ultimately leads to the hyper-
mutation of tumor cells [38, 39]. While the cancer stem 

cell hypothesis traditionally opposes the notion of poly-
clonal tumor origins, the interaction among numerous 
pluripotent stem cells presents a potential mechanism for 
polyclonal tumors origins [40].

Some studies have found that alcohol-induced LSCC 
and ESPT also have an independent origin, particularly in 
individuals with alcohol-induced facial flushing [41]. The 
alcoholic flush response is associated with a deficiency 
of acetaldehyde dehydrogenase (ALDH2), which results 
from excessive accumulation of acetaldehyde (AD). There 
is growing evidence that people who lack ALDH2 are at 
much higher risk of developing LSCC and ESCC from 
alcohol consumption than those with fully functional 
ALDH2, while ALDH2 × 1/2 heterozygotes are also at 
a heightened risk of developing LSCC and ESCC [42]. 
When significant quantities of AD accumulate in saliva, 
it results in direct contact between AD and the upper 
airway mucosa, potentially leading to genetic mutations 
[43]. AD has the ability to bind to DNA, forming stable 
DNA adducts that initiate DNA damage. Moreover, if 
these AD-induced DNA adducts manage to evade cel-
lular repair mechanisms and persist, they can ultimately 
give rise to coding errors and genomic instability [44]. 
Genomic instability can have an impact on chromosome 
structure, chromosome number, and DNA sequence, and 
in certain cases, it can compromise genomic integrity 
across multiple levels simultaneously. In extreme cases, 
resulting in a huge number of mutations in tumor cells, 
the effects of genetic drift (random loss or immobiliza-
tion of genotypes) can be amplified so that neutral or 

Fig. 2 Timeline: Historical definition of a field cancerized (Cellular basis)
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even harmful mutants can be retained during enlarge-
ment, leading to clonal diversity [45]. Therefore, there is 
a preference for independent clonal origin between HPV-
negative LSCC and ESPT.

HPV-positive tumors behave biologically differently 
from HPV-negative tumors, thereby influencing the 
pathophysiology of the disease [46]. The early occurrence 
of HPV infection is observed in both LSCC and ESCC, 
with HPV16 being the predominant pathogenic sub-
type [47, 48]. HPV is a circular, double-stranded DNA 
virus with a genome size of approximately 8 kb, lacking 
an envelope, and belonging to the papillomavirus family. 
This epitheliophilic virus specifically targets basal cells 
in stratified epithelial tissues in mucosal or cutaneous 
regions. Infection is initiated when the virus reaches the 
basal cells and replicates viral DNA via the cellular DNA 
replication machinery, producing a small number of cop-
ies of the circulating virus. The viral genome is organ-
ized into three sections: the early genetic region (E), the 
late genetic region (L), and the long regulatory region 
(LCR) that connects the two. The late region encodes 
L1 and L2 proteins, which are responsible for encoding 
the primary and minor viral capsid proteins, respec-
tively, the early region codes for E1-E5 genes primarily 
involved in viral genome replication and transcription 
[49]. It is essential for both E6 and E7 genes to be pre-
sent in order to induce oncogenic transformation in host 
cells. Furthermore, the expression of E6 and E7 is typi-
cally elevated in advanced precancerous stages, leading 
to the transformation of infection [50]. The integration 
of viral DNA into the host cell genome is a crucial step 
in the progression of HPV to cancer [51].The whole cel-
lular genome, including both gene-rich and gene-poor 
areas, is subject to viral integration. Initial investigations 
into viral integration causing cervical lesions indicate 
that this process is stochastic and may exhibit a prefer-
ence for microhomologous regions, areas with strong 
transcriptional activity, common weak sites, or areas 
near microRNAs (miRNAs) [52]. Integration into or near 
genes can result in alterations in gene expression through 
various mechanisms, including the formation of viral-
cellular fusion transcripts. However, the precise mecha-
nism remains unclear [53]. Parfenov et al. [54] observed 
an elevated somatic DNA copy number in the integrated 
region and reported that HPV viral integration disrupts 
genetics through multiple crucial pathways, such as the 
loss of tumor suppressor function, increased expression 
of oncogenes, and rearrangement of gene expression. It is 
rare for the P53 gene to be altered in HPV-positive LSCC, 
which is usually eliminated by E6 [49]. The E6 protein, in 
a protein-dependent manner, binds to the core region 
of the P53 protein, resulting in the formation of the E6/
E6AP complex. This complex facilitates the degradation 

of P53 through a ubiquitin-dependent pathway, thereby 
promoting tumor progression [55]. Additionally, the E7 
protein interacts with various cell cycle regulatory pro-
teins, influencing their levels and/or cellular activity. One 
such interaction involves the high affinity of E7 for pRb, 
which leads to feedback upregulation of p16INK4A [56]. 
This upregulation inhibits the interaction between pRb 
and the transcription factor E2F, which is responsible for 
controlling cell cycle G1/S changes. Consequently, this 
disruption of the cell cycle promotes oncogenic transfor-
mation and clonal amplification [57]. Moreover, tumor 
growth exhibits a clonal evolutionary trajectory charac-
terized by sequential clonal amplification, genetic diver-
sification, and clonal selection.  The stochastic nature of 
viral integration sites adds to tumor cell genetic diversity, 
and integration sites are passed down through clonal 
amplification [58]. One study revealed the clonal origin 
of bilateral HPV16-positive tonsillar tumors by viral inte-
gration analysis, which finally supported the monoclonal 
hypothesis [59]. Therefore, based on DNA integration, a 
key step in HPV viral carcinogenesis, it was found that 
HPV-positive LSCC secondary to ESPT is likely to be the 
result of clonal amplification. However, one case study 
suggests that there may be no clonal relationship between 
the LSCC and ESPT, and the exact mechanism needs to 
be further elucidated [60].

Epigenetic changes
Gene expression can be altered through epigenetic modi-
fication without altering nucleotide sequences. These 
changes can impede apoptosis, disrupt the cell cycle, 
facilitate the growth of precancerous cells, and result in 
the expansion of clonal cell populations that are suscep-
tible to new carcinogens. Over time, these alterations can 
accumulate carcinogenic events and contribute to the 
development of secondary primary tumors [61]. Addi-
tionally, epigenetic modifications like histone alterations, 
DNA methylation, chromatin remodeling, and micro-
RNA can serve as potential indicators of cancer growth 
and progression [62]. Altered DNA methylation patterns 
are commonly observed in LSCC. These patterns typi-
cally involve the hypermethylation of tumor suppressor 
oncogenes and the hypomethylation and transcriptional 
deletion of proto-oncogenes, followed by transcriptional 
reactivation [63]. In HPV-negative LSCC patients, genes 
such as CDKN2A, MGMT, MLH1, and DAPK are fre-
quently methylated, resulting in the inhibition of gene 
transcription and gene silencing [64]. According to 
the principles of phylogenetic tree analysis, mutations 
in TP53 and copy number alterations at 3q (contains 
SOX2), 9p (contains CDKN2A), 11q (contains CCND1), 
and 2q (contains NFE2L2) are considered to be backbone 
variants. During the progression from intraepithelial 
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neoplasia to malignancy, certain genes exhibit clonal 
dominance, resulting in the clonal diversity of tumor 
cells [65]. Additionally, tobacco smoke and alcohol can 
modify the cellular chromatin through histone modifi-
cation and impact gene transcriptions [66]. DNA meth-
ylation status plays a crucial role in gene regulation and 
is closely associated with histone modifications. Active 
gene expression is linked to histone H3 lysine 9 (H3K9) 
acetylation and histone H3 lysine 4 (H3K4) biomethyla-
tion [67]. Furthermore, it has been observed that smok-
ing and alcohol consumption have the potential to induce 
genetic damage in miRNA genes, particularly in regions 
characterized by single nucleotide polymorphisms. These 
regions are closely linked to the regulation of the P53 
gene [68]. In the case of mutant TP53, there is an upregu-
lation of programmed cell death ligand 1 (PD-L1) due to 
the modulation of miR-34 activity. Conversely, in wild-
type TP53 tumor cells, DNA damage leads to an increase 
in miR-34 expression, which subsequently interacts with 

the 3’-untranslated region of PD-L1 and suppresses its 
protein expression. This TP53/miR-34/PD-L1 pathway 
highlights the significant disparity in PD-L1 production 
between TP53 mutant tumors and wild-type tumors [69]. 
It is hypothesized that the higher levels of PD-L1 exhib-
ited by HPV-negative LSCC patients are likely due to the 
synchronous dual primary LSCC/ESPT with increased 
TP53 of the mutant type (Fig. 3A).

The degree of CpG island DNA methylation in HPV-
positive LSCC was found to be significantly higher com-
pared to HPV-negative LSCC. The most researched 
DNA methyltransferases are DNMT3a, DNMT3b, and 
DNMT1. It has been observed that the overexpression of 
DNMT1, DNMT3a, and DNMT3b is induced by the viral 
proteins E6 and E7, resulting in overall DNA hypermeth-
ylation [70]. This epigenetic alteration plays a role in the 
pathogenesis of respiratory papillomatosis recurrences, 
with some cases showing clonal changes in the progres-
sion of recurrences. Additionally, similar epigenetic 

Fig. 3 Key oncogenic mechanisms in HPV-negative and HPV-positive laryngeal cancers. A: Smoking and alcohol consumption cause mutations 
in the TP53 gene and affect DNA methyltransferase (DNMT)-dependent regulation of miRNA expression, leading to tumor transformation. B: 
By engaging the ubiquitin-protein ligase E3A (E6AP), E6 binds with p53 and promotes its degradation. Ubiquitinated TP53 also causes changes 
in the expression of miR-16, miR-15a, miR-143, miR-145, and miR-195. Cell cycle protein D1 expression begins when cell growth signaling occurs. 
Cell cycle protein E then activates CDK2, phosphorylates RB, releases E2F, and initiates cell cycle entry gene transcription
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events have been identified in two cases of HPV-infected 
laryngeal benign lesions that progressed to squamous cell 
carcinomas [71]. In the comparison between HPV-posi-
tive LSCC and cervical squamous cell carcinoma, there 
was an observed increase in the expression of miR-15a, 
miR-16, miR-195, miR-143, and miR-145. Significant 
overlap of these differentially expressed microRNAs was 
also found, suggesting that HPV-dependent microRNA 
expression disturbances are often present regardless 
of the anatomical location of the tumor [72]. Further 
investigations suggest that this miRNA expression may 
be directly influenced by viral E6 and E7 oncoproteins 
[73]. According to this research, viral integration events 
commonly cause host chromatin alterations, which fur-
ther influence the carcinogenic process of HPV-positive 
malignancies [74]. The papillomavirus genome is con-
nected with transcriptionally active host chromatin 
regions throughout the viral life cycle to enhance viral 
replication, transcription, DNA amplification, and persis-
tence [75]. The primary drivers of these viral oncogenes 
are the oncoproteins E6 and E7, which not only induce 
infection but also contribute to epigenetic alterations 
associated with malignant transformation. These onco-
proteins interact with cellular chaperones involved in the 
interdependent viral and cellular cycles within complexly 
differentiated epithelia [76]. Overall, HPV-positive LSCC 
exhibits susceptibility to DNA methylation, and its onco-
genic mechanism primarily relies on the oncoproteins E6 
and E7. Consequently, it is probable that LSCC and ESPT 
originate from a shared source and demonstrate shared 
genetic variations (Fig. 3B).

Tumor microenvironment
The process of cancer cell division, resulting in the emer-
gence of tumor cells, induces notable molecular, cel-
lular, and physical modifications in the surrounding 
tissues, thereby establishing a tumor microenvironment 
(TME). This interplay between cancer cells (seeds) and 
the microenvironment (soil) facilitates the progression of 
tumor growth  [77]. TME is not totally homogeneous, as 
different regions of the tumor may exhibit diverse blood 
densities, lymphovascular networks, immune infiltrat-
ing cell populations, and extracellular matrix composi-
tions. External oncogenic factors can not only modulate 
cell signaling to directly cause phenotypic diversity in 
tumor cells but can also act as selection pressures, lead-
ing to regional heterogeneity and supporting the clon-
ing of cells that proliferate efficiently in the context of a 
given microenvironment [78]. For example, tumor cells 
with the same genotype within a clone can exhibit var-
ied behavior in response to alterations in the microen-
vironment (such as hypoxia, immune monitoring, and 
additional extrinsic variables), leading to intratumor 

heterogeneity [79]. Likewise, microenvironmental fac-
tors, such as the proximity of cancer cells to cancer-asso-
ciated fibroblasts or hypoxia, can affect the “quiescence” 
of cancer cells, causing the cells to exhibit more or less 
stem cell-like behavior. In addition, it is becoming clear 
that host-tumor reactivity, as mediated by immune cells 
in the tumor microenvironment, is important for tumor 
formation [80]. The immune cell-mediated host-tumor 
reactivity within the TME establishes a foundation for 
the development of clonal tumors.

For LSCC, although both HPV-negative and HPV-pos-
itive LSCC are among the cancer types with the highest 
immune filtration rates, the degree and composition of 
immune cell infiltration vary depending on the etiology 
[81, 82] (Fig. 4). HPV-negative LSCC is characterized by a 
“cold” immune response, while the presence of numerous 
random mutations or overexpression of cellular genes 
contributes to intra-tumoral immune heterogeneity [83]. 
Reduced numbers of dendritic cells, a subpopulation of 
specialized antigen-presenting cells that drive T-cell dif-
ferentiation, were seen in the interstitial tumor region 
of smoking patients. Defects in dendritic cell matura-
tion also affect regulatory T cells as immature dendritic 
cells transform into gene-tolerant dendritic cells and 
secrete higher levels of TGF-β1, activates naive T cells to 
become Treg cells [84]. TGF-β expression in the larynx is 
reported to be higher in malignancies than in dysplastic 
lesions, and it may be a valuable diagnostic for malignant 
transformation [85]. In addition, smoking leads to less 
infiltration of activated cytotoxic T lymphocytes (CTLs) 
in intraepithelial and mesenchymal areas, thereby sup-
pressing the immune response to TME during smoking 
exposure [86]. To put it another way, smoking is highly 
likely to weaken the immunological response mediated 
by T cells. T cells are critical mediators of the adaptive 
immune response, and an imbalanced or incorrect T cell 
response may contribute to cancer progression and other 
immune disorders. Essentially, carcinogen exposure pre-
vents the differentiation and maturation of precursors 
and progenitors. Under selection pressures, proliferat-
ing cells of any differentiation stage can be susceptible 
to introducing and accumulating mutations, and accu-
mulate sufficient driver mutations to get the benefits of 
clonal proliferation [87]. Therefore, monitoring the func-
tional status of T cells is particularly important in HPV-
negative LSCC. Furthermore, we need to understand how 
damage changes the tissue microenvironment and why 
some mutations can be both harmful and advantageous 
to cells depending on the tissue microenvironment.

HPV-positive LSCC has been found to exhibit a higher 
abundance of Tc17 lymphocytes, naive CD4 + T cells, 
infiltrating CD8 + T cells, bone marrow dendritic cells, 
and TIL cells compared to HPV-negative LSCC [82]. 
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It has been demonstrated that a high density of tumor-
infiltrating CD8 + T cells has been shown to be indicative 
of favorable clinical outcomes in various cancer types, 
including laryngeal cancer [88]. There is controversy over 
CD4 + T cells’ role in anti-cancer immunity, although 
most studies suggest that tumor-infiltrating CD4 + T 
cells may serve as a prognostic marker for Treg, a crucial 
mediator of tumor immunosuppression [89]. During the 
early stages of HPV infection, the expression of E5 allows 
the virus to evade detection by anti-viral CD4 + and 
CD8 + T cells. This evasion mechanism leads to increased 
viral persistence, replication, and spread to neighboring 
cells, ultimately contributing to malignant transforma-
tion [90]. Moreover, cell cultures derived from HPV-pos-
itive LSCC patients exhibit significantly elevated levels 
of chemokines, including CXCL21, CXCL17, CXCL12, 
CCL10, and CCL9, as well as slightly higher levels of 
cytokines such as IL-23, IL-17, IL-2, and IFN-γ. These 
chemokines not only play a role in establishing a pro-
tumor microenvironment and facilitating organ-directed 
metastasis, but also contribute to disease progression 
[91]. HPV-positive LSCC patients showed more mDCs 
and slightly more pDCs and monocytes/macrophages 
[82]. Abundant CD68 + macrophages are related with 

lymph node metastases, extraperitoneal dissemination, 
and advanced disease [92]. All of these were attributed 
to the persistent expression of E6 and E7 oncoproteins, 
finally leading to the immune escape of tumor cells and 
a more malignant phenotype [77]. Overall, HPV-positive 
LSCC demonstrates heightened activation and infiltra-
tion of immune cells, leading to stromal alterations that 
exert a direct influence on the adjacent tissues, thereby 
facilitating the phenomenon of field cancerization and 
ultimately fostering the proliferation of malignant clones. 
Consequently, the persistent expression of the early pro-
teins E6 and E7, in LSCC presents a promising target for 
immunotherapeutic interventions.

Conclusions
An extremely common tumor in the upper aero-digestive 
tract, LSCC develops in a multistep process that begins 
with epithelial precursor lesions. This process appears to 
be influenced by genetic mutations, epigenetic changes, 
and microenvironmental changes. The occurrence of SPT 
in patients with LSCC is becoming increasingly common. 
Additionally, the clonal relationship between the two has 
been difficult to resolve posing a significant challenge to 
clinical diagnosis and treatment. So, understanding the 

Fig. 4 The outcome of clonal competition between HPV-positive and HPV-negative laryngeal cancers. In general, wild-type normal cells (green) 
are preferred over mutant cells (yellow). Nevertheless, alterations in the tumor immune microenvironment resulting from distinct etiologies 
(HPV-positive cell exhibiting “hot” immunity and HPV-negative cell exhibiting “cold” immunity) may grant a competitive edge to mutant 
cells, enabling them to surpass wild-type cells and establish dominance within the field. Consequently, mutant normal cells undergo further 
transformation into tumor cells (red) under the influence of the surrounding environment and subsequently remaining competitive
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clonal origin of cancer is critical to advancing personal-
ized cancer treatment and reducing cancer mortality. In 
cases where the progenitor clone carries a genetic defect 
targeting a therapeutic pathway, monotherapy for can-
cer may be justified. However, if a patient’s tumor devel-
ops through multiclonal initiation, molecularly targeted 
monotherapy is unsuccessful in treating the patient. This 
is because the small number of untargeted clones may 
drive therapeutic resistance. Thus, establishing a clonal 
link between SPT and the index tumor is more than just a 
classification problem, it also provides fresh insights into 
the patient’s tumor biology and can influence the treat-
ment and prognosis of the SPT. Given the unique biol-
ogy of LSCC, this review thoroughly examines the clonal 
relationship between SPT and the index tumor in terms 
of the oncogenic mechanisms of the major risk factors, 
concluding that the HPV-negative LSCC are likely to 
present with dual primary independent origin LSCC/
ESPT, whereas HPV-positive LSCC complicated by ESPT 
mostly supports the monoclonal hypothesis. In fact, the 
mechanisms underlying the transfer of seeds and the 
dynamics of evolutionary clonality in the presence of 
immune stress and epigenetic alterations are not yet fully 
understood. In future research, more in-depth explora-
tion of the origin of tumor clones is needed to identify 
simpler and more accurate ways to assess the origin of 
clones to develop rational treatment plans and improve 
patient survival.
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