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Abstract 

Parasite infection is one of the many environmental factors that can significantly contribute to carcinogenesis 
and is already known to be associated with a variety of malignancies in both human and veterinary medicine. How-
ever, the actual number of cancerogenic parasites and their relationship to tumor development is far from being fully 
understood, especially in veterinary medicine. Thus, the aim of this review is to investigate parasite-related cancers 
in domestic and wild animals and their burden in veterinary oncology. Spontaneous neoplasia with ascertained 
or putative parasite etiology in domestic and wild animals will be reviewed, and the multifarious mechanisms of pro-
tozoan and metazoan cancer induction will be discussed.
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Introduction
With an estimated 19.3 million new cases of cancer 
and almost 10 million deaths in 2020, cancer is a major 
threat to public health globally [1]. Many environmental 
variables, such as pathogens and unhealthy lifestyles, can 
contribute significantly to carcinogenesis. Infectious dis-
eases account for 15.4% of the worldwide cancer burden 
[2], reaching 20% in developing countries [3]. Indeed, it 
has been predicted that infections will account for most 
human cancer cases by 2050 [4].

There are 11 species of pathogenic microorganisms that 
are "carcinogenic to humans" and categorized as group 1 
carcinogens according to the International Agency for 
Research on Cancer (IARC) [5]. Among these, Helicobac-
ter pylori and viruses such as the human papillomavirus 
(HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), 

and Epstein-Barr virus (EBV) are well-known biologi-
cal carcinogens [1, 5]. Three helminthic species are also 
included in group 1: Opistorchis viverrini, Clonorchis 
sinensis, and Schistosoma haematobium [3, 5–7]. In addi-
tion, Schistosoma japonicum has been assigned to group 
2B (possible carcinogens), and Schistosoma mansoni and 
Opisthorchis felineus to group 3 (not classifiable car-
cinogens) [8, 9]. Furthermore, the previously neglected 
notion that other metazoan and protozoan parasites may 
also contribute to malignancy development is now being 
evaluated [10, 11].

The oncologic burden is increasing in veterinary medi-
cine as well [12], and the list of pathogens responsible 
for animal cancer development continues to grow [13, 
14]. In addition to various viral [15], putative bacterial 
species [16], and transmissible tumor cells [17–19] that 
cause cancer, certain parasites have also been identified 
over the years, although an overlooking of their impact 
on animal health was suggested [20–24]. While break-
throughs in the field of parasite-related carcinogenesis 
have mainly concerned humans so far, understanding the 
role of these parasites in veterinary medicine could lead 
to significant progress in prevention and new potential 
therapies for animal species as well [13]. Furthermore, 
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a deeper knowledge of this phenomenon would benefit 
human medicine in a variety of ways. Wild and domes-
tic animals have always provided unique models to elu-
cidate the infectious-driven neoplastic phenomena, and 
their use in modern oncology is increasing [25–27]. The 
high occurrence of parasitic infection and the wider 
biodiversity in host-parasite interactions in the veteri-
nary field compared to humans, as well as the generally 
lower awareness of their zoonotic potential (compared to 
viruses and bacteria), are all significant factors in open-
ing new and unpredictable perspectives for research on 
cancerogenic parasites [25, 26, 28]. Still, the literature 
on cancer-causing parasites in the veterinary field is 
extremely fragmented, with some pathogens well-charac-
terized (such as Spirocerca lupi) [22], and others that are 
ignored or only known anecdotally. While cancerogenic 
parasites in humans are widely investigated and updated 
reviews are provided [7, 29–35], there is a gap in the vet-
erinary field and parasites of veterinary importance are 
often not included in these discussions.

Therefore, the aim of this paper is to comprehensively 
review the current literature on cancer-causing parasites 
in veterinary medicine, gathering articles on naturally 
occurring parasite-induced cancer in wild and domestic 
animals in a comprehensive way and providing an over-
view of the cancerogenic mechanisms involved.

Materials and methods
The literature search on PubMed and Google Scholar 
used the terms "parasite OR helminths OR protozoa" 
AND "cancer OR neoplasia OR tumor OR malignancy," 
and various combinations of these terms were employed. 
A second specific search was based on the results of this 
first literature search and restricted to parasitic agents in 
which an etiopathogenetic role was assumed or ascer-
tained in spontaneous malignancies in wild and domestic 
animals. The search was conducted using the scientific 
names of parasite species (Gongylonema spp.; Hetera-
kis spp.; S. lupi; Ophidascaris spp.; Ollulanus trichuspis; 
Nochtia nochti; Trichinella spp.; C. sinensis; Opistorchis 
spp.; Fasciola spp., Platynosomum sp.; Schistosoma spp., 
Taenia spp., Linguatula serrata, Theileria spp.) or their 
taxa (e.g., Trematoda; Cestoda; Platyhelminthes, Nema-
toda; Apicomplexa; Arthropoda) combined with the 
names of the specific malignancy and related host spe-
cies. Observational studies such as case reports, case 
series, cross-sectional, and case–control studies were 
included. There was no set time restriction, and addi-
tional literature was found using a reverse and forward 
snowball search strategy. Parasites such as Gongylonema 
neoplasticum, O. felineus, Cryptosporidium spp., whose 
carcinogenic role has not been demonstrated but cannot 

be ruled out based on in  vitro or in  vivo experimental 
research, were also mentioned in the discussion.

In the first part of the review, a brief overview on the 
etiology, life cycle, and zoonotic potential of each para-
site is conducted before discussing the neoplastic lesions 
associated. In the second part, an outline of ascertained 
and putative cancerogenic mechanisms is provided.

In vivo studies concerning parasite-induced cancer in 
experimental animals and in vitro studies were excluded. 
However, the results of experimental studies focusing 
on the cancerogenesis mechanisms were mentioned in 
the second part of the paper. The search methodology 
adheres to the recommended standards for effective nar-
rative review articles [36, 37].

Parasites associated with neoplasia in domestic 
and wild animals
The original articles retrieved in the literature search that 
focused on the causal association of parasites with spon-
taneous neoplasia in veterinary medicine are summarized 
in Table 1. Scientific papers on S. lupi are not included in 
Table 1 for readability reasons, but they will be discussed 
in the corresponding section. The parasite-cancer rela-
tionship, both putative and confirmed, was observed in 
a range of domestic (dog, cats, ruminants, rats, mice, and 
poultry species) and wild or exotic species (prosimians, 
New-World and Old-World monkeys, snakes, and musk-
rats). A total of 15 parasite genera were identified, with 
the majority (14) being metazoan, especially (but not 
exclusively) helminths. The parasitic species identified 
were trematodes (C. sinensis, Fasciola spp., O. viverrini, 
Platynosomum illiciens, S. mansoni), cestodes (T. taeni-
formis), nematodes (G. pulchrum, S. lupi, Heterakis spp., 
Nochtia nochti, Ollulanus trichuspis, Ophidascaris sp., 
Trichinella spp.), and arthropods, such as pentastomides 
(Linguatula serrata). An additional protozoan parasite 
was identified (T. annulata). This trend mirrors that of 
human medicine, where helminths initially received most 
of the attention [29, 30], but more recent improvements 
in diagnostic tools have shifted emphasis to other puta-
tive parasitic agents, including protozoa [11, 38, 39].

From a pathological standpoint, both mesenchymal 
and epithelial neoplasms were reported, with only one 
hematopoietic lesion (lymphoma).

Some preliminary reflections: the jumping the gun 
of Gongylonema neoplasticum.
Theories suggesting a link between parasite diseases 
and neoplastic phenomena are very old and have been 
hypothesized for centuries [24, 40, 41]. However, sev-
eral of these theories are no longer scientifically relevant, 
such as Sennert’s (1572–1637) research on common 
leprosy and carcinoma etiology, and Justammond’s 
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(1737–1786) theory that cancer was caused by insects 
absorbed by lymphatic vessels [40, 41]. The scientific 
foundation of what is currently known about the asso-
ciation between cancer and infectious agents was estab-
lished at the beginning of the twentieth century [42]. The 

discovery of the parasite G. neoplasticum is undoubtedly 
a remarkable and controversial story [43]. Gongylonema 
is currently a genus of widespread spirurid nematodes in 
the family Gongylonematidae, and humans are thought 
to be accidental hosts [44–46]. The squamous epithelial 

Table 1 Spontaneous parasite-related neoplasia reports in wild and domestic animals

Phylum, parasite species, host species, neoplasm, and the total number of cases involved are reported. HCC, hepatocellular carcinoma; SCC, squamous cell carcinoma; 
ND, not determined. Spirocerca lupi is not included in this table

Phylum Parasite species Host species Associated neoplasms Cases References

Nematoda Gongylonema pulchrum Lemur macaco variegata esophageal SCC 1 [67]

Heterakis gallinarum Phasianus colchicus leiomyoma 8 [124]

Heterakis gallinarum Phasianus versicolus fibrosarcoma 1 [132]

Heterakis isolonche Phasianus colchicus mesenchymal tumor NOS 1 [133]

Heterakis isolonche Crysolophus pictus leiomyoma 1 [134]

Heterakis isolonche Crossoptilon auritum leiomyoma 2 [136]

Heterakis isolonche Crossoptilon mantchuricum leiomyoma 1 [136]

Heterakis isolonche Syrmaticus soemmerringii leiomyoma 1 [136]

Heterakis sp. Crysolophus pictus leiomyoma 3 [135]

Ophidascaris sp. Morelia spilota spilota gastric adenocarcinoma 1 [137]

Ollulanus trichuspis Felis catus gastric adenocarcinoma 2 [144]

Nochtia nochti Macacus mordax invasive gastric papilloma 6 [153]

Trichinella spiralis Felis catus oral SCC 1 [170]

Trichinella sp. Canis lupus familiaris melanoma 1 [169]

Clonorchis sinensis Felis catus cholangiocarcinoma 2 [191]

Platyhelminthes Clonorchis sinensis Canis lupus familiaris cholangiocarcinoma 1 [193]

Opistorchis viverrini Felis catus biliary cystadenoma 1 [198]

Fasciola gigantica Bos taurus leiomyoma 10 [216]

Fasciola gigantica Bos taurus leiomyoma 44 [218]

Fasciola hepatica Bos taurus HCC 11 [219]

Fasciola sp. Bos taurus leiomyoma 1 [217]

Platynosomum illiciens Felis catus cholangiocarcinoma 4 [227]

Platynosomum illiciens Felis catus cholangiocarcinoma 3 [228]

Platynosomum sp. Callithrix sp. HCC 1 [229]

Schistosoma mansoni Pan troglodytes HCC 1 [232]

Taenia taeniformis Rattus norvegicus renal sarcoma 1 [52]

Taenia taeniformis Rattus norvegicus hepatic sarcoma 1 [52]

Taenia taeniformis Rattus norvegicus hepatic sarcoma 11 [241]

Taenia taeniformis Rattus norvegicus hepatic fibroma 1 [241]

Taenia taeniformis Rattus norvegicus hepatic sarcoma 3 [242]

Taenia taeniformis Rattus norvegicus hepatic fibrosarcoma 16 [240]

Taenia taeniformis Rattus norvegicus hepatic fibrosarcoma 1 [244]

Taenia taeniformis Rattus norvegicus hepatic fibrosarcoma 2 [245]

Taenia taeniformis Rattus norvegicus hepatic sarcoma 1 [247]

Taenia taeniformis Rattus norvegicus hepatic fibrosarcoma 48 [248]

Taenia taeniformis Rattus norvegicus hepatic fibrosarcoma ND [249]

Taenia taeniformis Rattus norvegicus hepatic fibroma 1 [250]

Taenia taeniformis Mus musculus hepatic fibrosarcoma 7 [246]

Taenia taeniformis Ondatra zibethicus hepatic fibrosarcoma 1 [243]

Arthropoda Linguatula serrata Canis lupus familiaris nasal basosquamous carcinoma 1 [274]

Apicomplexa Theileria annulata Bos taurus lymphoma 1 [288]
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surface of the mouth, esophagus, rumen, and stomach of 
several birds and mammals are the locations where the 
adults reside and reproduce [47].

In 1907, when three wild rats were dissected, Dan-
ish physician Johannes Fibiger observed gastric tumors 
as well as roundworms inside them. This discovery 
prompted Fibiger’s research, which identified the worm 
as a new species, Spiroptera (Gongylonema) neoplastica, 
and demonstrated that cockroaches were its intermediate 
hosts [48, 49].

The most significant finding in Fibiger’s work was the 
identification of a causal relationship between parasites 
and cancer by inducing the same tumors in rats and mice 
fed with G. neoplastica third larval stages (L3)-contain-
ing cockroaches. Fibiger also emphasized that the lesions 
were not merely papillomas or granulomas caused by for-
eign-body irritation, like other frequent worm-induced 
epithelial hyperplastic lesions. Instead, he accurately 
described squamous-cell carcinomas invading nearby 
tissues, with metastatic spread to many organs [50]. 
Parasitic worms had previously been implicated in can-
cerogenesis, as shown by S. haematobium and bladder 
cancer in humans in 1911 [51], as well as T. (Hydatigera) 
taeniformis and liver sarcoma in rats by Amédée Borrel 
in 1906 [52]. However, a technique for inducing cancer in 
lab animals was lacking; in this regard, Fibiger’s findings 
were astounding and gave rise to an impulse in cancer 
research [24], leading Fibiger to receive the Nobel Prize 
Award in Medicine and Physiology in 1926. The peculiar 
thing about this story is that Fibiger was wrong: a series 
of experiments carried out by different authors [53], cul-
minating in the study written by Hitchcock and Bell [54], 
challenged the Danish Physiologist’s findings. The results 
by Hitchcock and Bell showed that the worms were not 
the causative agents of the lesions, but that the "neo-
plasms" were mostly caused by a nutritional deficiency. 
Indeed, Fibiger’s animals were subjected to a diet lack-
ing in vitamin A, whereas the worms induced only mild 
hyperplasia and hyperkeratosis in rats that were well-fed 
[54]. Furthermore, the Gongylonema-associated growths 
were actually "hyperplastic hyperkeratotic papillomas" 
and the presumed metastases were patches of metaplas-
tic tissue. Therefore, the beginning of the cancer-causing 
parasite investigations was a jump-the-gun event. In the 
decades that followed, the scientific community rejected 
the work on Gongylonema and condemned it as a major 
flaw [43, 54].

Even so, this story is meaningful in several ways. On 
the one hand, the Gongylonema studies paved the way 
to research into cancer causes and prevention, notwith-
standing the controversy surrounding them. Secondly, 
it effectively illustrates the obstacles encountered in the 
study of cancer-causing parasites, and even nowadays 

it is challenging to determine whether parasites are the 
underlying cause of a particular malignant condition [21]. 
A major issue is the prolonged time frame between infec-
tion, tissue damage, and the development of malignancy. 
Cancer-causing parasites may no longer be present at 
the time of tumor diagnosis, and antibodies may fade 
off in cases of chronic infections, but cellular injury may 
eventually endure [21, 35]. Large epidemiological studies 
can identify an association, but there may be a number 
of confounding variables that could affect the evalua-
tion of neoplastic risk. The time interval between expo-
sure and outcome is almost unquantifiable, particularly 
in resource-poor settings, where both parasitic infection 
and cancer are unlikely to be recognized earlier. Due to 
limited access to healthcare, establishing registry data-
bases for human cancers in low-income nations may be 
difficult and under-registration is a typical occurrence 
[55–59]. This is even more challenging in a veterinary 
medicine scenario, since global and national strategies 
to increase the monitoring of neoplastic pathologies are 
emerging only in recent years and are restricted to pets 
[60]. Moreover, the host spectrum variability exhibited 
by many parasites of veterinary importance, including 
Gongylonema, does nothing but complicate the picture 
further, due to species-specific pathogenetic responses to 
parasites [61–65].

To conclude, just as interest in the Gongylonema genus 
seemed to be waning, new data emerged. Zhou et al. [66] 
recently described the first human case of esophageal 
squamous cell cancer development linked to the gullet 
worm G. pulchrum infection. Interestingly, an association 
between G. pulchrum infection and the same neoplasia 
was also observed in a 17-year-old vari female (Lemur 
macaca variegata) kept in a German zoo [67]. The fact 
that G. pulchrum is phylogenetically close of to another 
spirurid worm, S. lupi, whose carcinogenic potential is 
widely recognized (see next section), could cast doubt 
on the inflexible rejection of Fibiger’s work. However, 
given the few reports, the cancerogenic potential of G. 
pulchrum remains unknown. These data underscore the 
complexity of this issue and partially renew interest in 
Fibiger’s work, which emphasized himself the importance 
of multiple factors in cancer development [50].

Spirocerca lupi
The nematode Spirocerca lupi, belonging to the Spirocer-
cidae family, is the causal agent of spirocercosis in dogs 
[61, 68]. Although domestic dogs are the main hosts of 
S. lupi, various wild carnivores have also been reported 
to become infected, with a plethora of different clini-
cal symptoms [61, 65, 69–74]. S. lupi is widespread and 
reports from more temperate European countries have 
increased in recent years, although it is common in 
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tropical and subtropical climates [75, 76]. From a One 
Health perspective, variables such as climate change, 
urbanization, and pet travel could have altered the 
endemic areas of its vector, the dung beetle, and the geo-
graphic distribution of the parasite [61].

The life cycle of this parasite is quite similar to that of 
other spirurids, involving coprophagous beetles as inter-
mediate hosts. Ingestion of dung beetles or other para-
tenic hosts carrying encapsulated L3 of S. lupi results 
in infection of the carnivore definitive hosts [61, 77]. 
Within two days, L3 larvae are released in the dog’s stom-
ach, penetrate the gastric mucosa, and migrate cranially 
through the wall of the gastric artery and the caudal tho-
racic aorta. In the meantime, L3 molt into fourth-stage 
larvae (L4). It completes its migration through the intima 
of the aorta to the esophagus around 100 days after infec-
tion [61, 68, 78]. The esophagus is the adult worm’s defin-
itive localization, though abnormal migration can also 
take place in the thoracic cavity [79], subcutis [80], blad-
der [68], lungs [81], mesentery [82], or nervous system 
[83]. The adult parasite completes its development in the 
submucosa and subadventitia of the esophagus, where 
it induces the growth of a nodule that protrudes into 
the lumen of the esophagus. Female worms discharge 
embryonated eggs through an opening in the esophageal 
mucosa for up to 2 years [78, 84]. Many vertebrates can 
act as paratenic hosts. As a result, adult hunting and stray 
dogs have higher incidences of infection compared to 
household pets, small breed dogs, and puppies [68, 85].

A wide range of clinical symptoms may occur in cases 
of spirocercosis. Depending on the stage of the disease, 
various complications have been observed, such as vom-
iting, regurgitation, weight loss, dyspnea, and dysphagia, 
which reflect the different lesions induced by the worm in 
the host tissues [61, 68, 77]. These include caudal esoph-
ageal stenosis [77], thoracic vertebral spondylitis [86], 
hypertrophic osteopathy of the thoracic limbs [81], aneu-
rysm formation [87], aortic iliac thromboembolism [88], 
hemothorax [89], and hemopericardium [90]. The most 
critical lesion is the growth of sarcomas in the esophagus 
of dogs [22, 68, 78, 91]. Malignant esophageal nodules 
can occur in 25% of infected dogs [92]. Osteosarcoma 
and fibrosarcoma are the two most frequent diagnoses 
[61, 78, 92], but chondrosarcoma [93] and undifferenti-
ated sarcoma [94] can also occur. Metastases to many 
organs, including the tongue, lungs, kidneys, stomach, 
spleen, and heart have been frequently observed [23, 95].

S. lupi is one of the few cancer-causing parasites on 
which a large body of literature is available in veterinary 
medicine. Seibold et colleagues [91] were the first to 
establish a link between spirocercosis and neoplasia in 
1955, reporting ten cases of esophageal sarcoma among 
39 infected dogs from Auburn University (Alabama; 

U.S.A.), four of which were metastatic. Shortly after, 
Ribelin and Bailey [96] reported sixteen cases of fibro-
sarcoma or osteosarcoma of the esophagus linked to 
worm-induced lesions from the same institution. No 
esophageal neoplasm was found in 1806 control canine 
necropsies where the esophageal worm was absent. Since 
then, numerous additional case reports and autoptic sur-
veys have confirmed these findings. Examples come from 
Israel [94], Jamaica [94], Egypt [97], Brazil [98, 99], Lousi-
ana [100], Central America [23, 78], Kenya [72, 101–103], 
India [104–106]. Some of the more recent investigations 
were carried out in South Africa [92, 107–109], Iran 
[110], Bangladesh [111], Israel [95, 112, 113], and Amer-
ica [114–116]. Since malignant esophageal neoplasms are 
extremely uncommon in locations without spirocercosis 
[115], it was easier to prove a causal relationship [68].

The caudal esophageal region is the most affected site 
[78], although aorta, lung, and spinal cord sarcomas 
caused by S. lupi have also been described [51, 81, 103]. 
Female dogs seem to be predisposed [108]. Despite the 
substantial literature on the subject, it is interesting to 
note that no neoplastic forms have ever been identified in 
any of the other definitive hosts of Spirocerca [61].

Esophageal worm-induced nodules progress from the 
early inflammatory stage to the pre-neoplastic stage, and 
finally to the neoplastic stage. This trend has well-known 
histological features [107] and metabolic features [22, 
61, 116]. The early inflammatory esophageal nodule first 
appears in the submucosa of the esophageal wall, a few 
centimeters cranial to the diaphragm [23]. Smooth nod-
ules contain several adult male and female parasites, as 
well as a significant number of neutrophils, fibrocytes, 
a lesser number of lymphocytes and abundant collagen 
deposition [107]. These nodules have been sometimes 
wrongly referred to as granulomas, but they lack struc-
tured macrophages and mostly contain neutrophils [61, 
78, 107]. In contrast to pre-neoplastic nodules, which 
include immature proliferating fibroblasts and a smaller 
amount of collagen, the normal connective tissue is 
mainly made up of fibrocytes and significant amounts of 
collagen. Moreover, pre-neoplastic nodules have fewer 
parasites, a higher mitotic index, and more multinucle-
ated cells. Adult worms, which are located in the sur-
rounding connective tissue near small purulent areas, are 
rarely detected in the lesions during the neoplastic stage 
[117]. The malignant nodule can grow up to 11  cm in 
length, and displays necrosis, after losing its smooth look 
[107, 118].

In conclusion, S. lupi is the sole nematode that has 
been confirmed to cause malignant processes in dogs 
[22]. This parasite has been suggested as a model to 
research how nematodes operate as carcinogenic agents. 
However, the literature often ignores this parasite due 



Page 6 of 27Fonti et al. Infectious Agents and Cancer           (2023) 18:45 

to its scanty zoonotic potential [21, 29, 30], and issues 
remain in the in  vivo experimental induction of cancer 
by S. lupi in laboratory animals (since they act as para-
tenic hosts), and in canids (for ethical reasons) [119]. 
Attempts have recently been made to maintain adult S. 
lupi worms alive in ex  vivo murine fibroblasts cultures, 
albeit for a short period of time [120]. Still, the expand-
ing area of endemicity of this parasite and the scarcity of 
cancer-causing nematodes in human medicine makes it 
particularly intriguing, and further studies are undoubt-
edly warranted.

Heterakis gallinarum and Heterakis isolonche
Members of the genus Heterakis are common Ascaridida 
parasites that reside in the ceca of numerous poultry 
bird species. There are several Heterakis species that fall 
under this taxon, but since molecular diagnostics have 
not been frequently employed to analyze populations of 
Heterakis in the field, it is challenging to precisely iden-
tify these species or establish their phylogenetic rela-
tionships [121]. Moreover, there is considerable overlap 
in the host species that are receptive to each Heterakis 
spp. strain, and concurrent coinfections have been docu-
mented [122–124].

The direct life cycle of this parasite contributes to its 
high prevalence in intensive flocks. Adults reproduce in 
host ceca. Unembryonated Heterakis eggs are expelled by 
gravid females in the lumen of the cecum, and they are 
shed in feces. Environmental factors such as temperature, 
humidity, and aerobic conditions outside the host influ-
ence egg development into infectious L2 larvae over the 
course of around two weeks [125]. Larvae can be ingested 
directly by a specific host or by a paratenic host like an 
earthworm [122, 123].

The traditional main health concern associated with 
Heterakis parasites is that one species, H. gallinarum, 
is crucial in the spread of the protozoan parasite Histo-
monas meleagridis, which is the primary cause of a 
severe condition known as "blackhead" in Galliformes 
[126, 127]. H. gallinarum does not migrate inside the 
host’s tissues, and only modest lesions with negligible 
impact on bird performance are usually recorded [123, 
124]. However, cecal nodules due to worm irritation can 
be observed, especially in cases of subsequent or heavy 
infections [123, 124, 128–130]. Nodular or verrucous 
typhlitis associated with Heterakis occurs worldwide in 
various flock bird species, mainly pheasants, and is char-
acterized by the development of inflammatory, granu-
lomatous, or even neoplastic nodules in the cecal wall, 
primarily in the submucosa. This condition is mainly 
caused by the nematode H. isolonche [124, 131]. The 
association between Heterakis infection and mesenchy-
mal malignant transformation was first observed in Italy 

at the end of the nineteenth century [132]. The Italian 
veterinarian pathologist Galli-Valerio identified a fibro-
sarcoma in the cecum of a H. gallinarum-infected green 
pheasant (Phasianus versicolor), making this parasite one 
of the first ones hypothesized to be associated with can-
cer. Subsequently, other reports described mesenchymal 
tumors caused by H. isolonche in the common pheas-
ant (Phasianus colchicus) [133] and the golden pheasant 
(Crysolophus pictus) [134]. Next, in 1972 Helmboldt and 
Wyand [135] described the presence of leiomyomas in 
three golden pheasants caused by Heterakis species. Each 
nodule included Heterakis worm fragments that could be 
recognized by their morphology, coupled with clusters of 
reactive lymphocytes. The authors described clear pro-
gression from inflammatory to neoplastic tumors. Heter-
akis gallinarum was grossly found free in the cecal lumen 
of two of these pheasants.

Balaguer et al. [136] and Menezes et al. [124] conducted 
two more recent studies. In the first one, four cases of 
nodular typhlitis caused by H. isolonche were found in 
a multispecies flock of pheasants (Crossoptilon aritum, 
C. mantchuricum, and Syrmaticus soemmerringii) from 
a Spanish Zoo. The cecal walls of all four bird species 
revealed extensive lobular thickening because of multi-
ple, whitish, firm nodules that ranged in diameter from 1 
to 3 mm. Several nodules and the cecal lumen contained 
H. isolonche nematodes. The neoplastic cell morphol-
ogy and immunostaining pattern were consistent with 
benign tumors of the smooth muscle (leiomyoma) [136]. 
In the other study paper, an epidemiological and patho-
logical survey was carried out on 50 ring-necked pheas-
ants (Phasianus colchicus) from enclosures in Rio de 
Janeiro, Brazil [124]. A high prevalence (90%) of H. galli-
narum infection, and absence of H. isolonche, was found. 
Chronic diffuse typhlitis, granulomas, and necrotic foci 
surrounded by myxoid matrix, hemosiderin deposits, 
lymphocytic infiltrates, multinuclear giant cells, and his-
tiocytes in the submucosa of the cecal wall were found 
linked to immature H. gallinarum worms. Atypical fusi-
form mesenchymal cells with elongated nuclei clustered 
in chaotic whorls and dense bundles, low mitotic figures 
and infiltrative aspects, and absence of metastasis lesions 
met the diagnostic criteria of a leiomyoma in eight ani-
mals [124]. Surprisingly, unlike phlogistic lesions, neo-
plastic change was unrelated to parasite burden [123, 
124]. Persistent H. gallinarum reinfections might lead to 
an intratissue parasitic phase [128, 130], where granu-
lomatous nodules could further progress to neoplasia 
[124]. Sequential infection by different nematode strains 
transmitted by other gallinaceous species might also lead 
to the same effect. In addition, previous research had 
revealed that certain Heterakis strains are not adapted to 
pheasants and may trigger higher pathogenicity [63].
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In light of these results, the host-parasite relationship 
between several species of poultry and Heterakis strains 
may serve as a common and widespread animal model 
to shed light on the inflammatory-to-neoplastic pathway 
[22, 124].

Ophidascaris spp.
Besides Heterakis, another member of the Ascarididae 
family has been linked to a malignant condition. Four 
nematodes were discovered inside necrotic areas of 
gastric adenocarcinoma in a 7-year-old male diamond 
python (Morelia spilota spilota) in a recent paper by 
Baron et colleagues [137]. Ophidascaris spp. was identi-
fied morphologically and by molecular investigations. 
Many snake species are commonly infected with nema-
todes of this genus [138]. The adult parasites develop 
nodular masses in the esophagus and stomach of snakes, 
embedding their anterior bodies into the digestive 
mucosa. The L3 larvae are normally located in the liver 
of the intermediate host, such as small rodents or mar-
supials [139]. The mechanisms that predispose snakes to 
develop neoplasia are still poorly understood. Arenaviral 
and retroviral infections, among other viruses, have been 
suggested to cause a number of snake tumors [140, 141]. 
The case report by Baron is the lone and first paper con-
cerning this parasite etiology. Snake adenocarcinomas 
are rather common tumors [142] and so is Ophidascaris 
infection [138, 143]. Hence, parasite infection might have 
been an independent event occurring by accident in a 
snake with adenocarcinoma. Yet, the bordering of the 
non-encapsulated, infiltrative epithelial neoplasm with 
a significant desmoplastic response and the numerous 
granulomas coupled to the nematodes embedded within 
the gastrointestinal wall suggested that the inflamma-
tory response to ascaridiasis had an oncogenic role in the 
development of the neoplasm described [137].

Ollullanus trichuspis
A second report concerning nematode infection in gas-
tric adenocarcinoma growth was published by Dennis et 
colleagues [144]. The concomitant development of gas-
tric adenocarcinoma in two neutered male Persian cats 
was observed at Colorado State University. Interestingly, 
the two cats were of the same lineage and had been raised 
together in an indoor setting. A transmural mass with a 
core area of necrosis in the fundus region, with polypoid 
consolidating projections on its surface was surgically 
biopsied. At histology, tubuloacinar structures infiltrated 
the deep lamina propria, submucosa, and muscularis 
mucosae with lymphovascular invasion. Metastases to 
the liver, kidney, and lungs were also reported. At the 
periphery, fibrosis and proliferative gastritis with intrale-
sional Ollullanus tricuspis worms were highlighted [144]. 

These worms are small parasitic Strongylida from the 
Trichostrongylidae family that reside in the stomach of 
cats and other felids, with a worldwide distribution [145]. 
Infections in dogs have also been reported [146]. Ollul-
lanus tricuspis has a direct life cycle, and its transmis-
sion takes place by ingestion of infected cat vomitus by 
other hosts. While eggs and larvae are not generally shed 
in the feces, any stage of the parasite life cycle can be 
transmitted by this route [145, 146]. Ollullanus tricuspis 
is thought to have a typically low pathogenic potential, 
causing mucosal erosions, increased mucus production, 
and hyperplasia of the lymphoid follicles [144]. However, 
life-threatening sequelae have been reported, including 
severe chronic gastritis [147, 148]. No additional cases of 
simultaneous gastric adenocarcinoma developing in two 
cats of the same age and belonging to the same house-
hold are reported in the literature. In fact, only occasional 
reports exist for this type of tumor, which has a very low 
incidence in the feline species [149, 150]. Thus, given 
the uncommon nature of this scenario, parasite-driven 
chronic gastritis may have contributed to the onset of 
stomach adenocarcinoma in these two related cats, 
in conjunction with other environmental and genetic 
variables.

Nochtia nochti
Among the members of the Trichostrongylidae fam-
ily, Nochtia nochti is a small, bright red worm that has 
been observed in the prepyloric region of the stomach 
of Old World monkeys, especially macaques (Macaca 
spp.) [151]. Its life cycle is direct, with L3 larvae intake 
by fecal–oral transmission. The parasites burrow into the 
gastric mucosa at the fundus-pylorus junction, mature 
into adults, and lay eggs shed with feces, which become 
infectious L3 larvae after a week [152].

Nochtia nochti infection has been causally linked to 
epithelial stomach cancers in six crab-eating macaques 
(Macaca fascicularis) in 1939 by Bonne and Sandground 
[153]. The presence of worms was observed in each, 
and no N. nochti was found in the absence of a tumor. 
A causal role for the parasite was experimentally con-
firmed: when adult Nochtia worms were introduced into 
the stomach of two healthy monkeys, tumors occurred 
within three months [153]. The lesions emerged from the 
gastric mucosa at the border between the prepyloric and 
fundal sections as hyperemic, cauliflower-like masses, 
initially appearing as benign papilloma, but closer exami-
nation revealed a more malignant behavior. The muscula-
ris mucosa, the submucosa, and the muscular layer were 
frequently invaded by proliferating epithelial cells. Lym-
phovascular invasion at the periphery of the lesion was 
reported too [153]. Further studies confirmed the associ-
ation of this parasitic agent to gastric benign papillomas 
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in a wider number of stump-tail macaques (Macaca spe-
ciosa) [154], crab-eating macaques [155–157], and rhesus 
macaques (Macaca mulatta) [157, 158], although their 
true nature is a matter of debate. In fact, unlike what was 
reported by Bonne and Sandground [153], no evidence of 
malignancy was reported in these cases. Consequently, 
some authors believe that the growth behavior of the epi-
thelial cells is more likely to be reactive hyper-regenera-
tion rather than neoplastic proliferation [154, 156, 158], 
similar to other proliferative gastritis forms induced by 
trichostrongylids [159, 160], oxyurids [161], capillarids 
[162], and Physaloptera spp. [152] in other primate and 
non-primate species.

Trichinella spp.
Trichinellosis is a parasitic disease caused by nematodes 
belonging to the Trichinellidae family, genus Trichinella. 
They can infect humans as well as more than 150 other 
ectothermic and homeothermic animals, making it the 
most common food-borne helminth zoonosis [163]. In 
addition to the significant impact this parasite had [164] 
and continues to have on public health [165, 166], it also 
represents a very intriguing and paradoxical research area 
for cancerogenesis and is being studied on two appar-
ently antithetical fronts. On the one hand, evidence of 
Trichinella spiralis anticancer activity has been provided 
by numerous researchers. Its potential anticancer path-
ways were recently reviewed in a comprehensive manner 
by various authors [167, 168] and will be mentioned in 
the last part of this paper. On the other hand, since the 
underlying mechanisms of host-parasite balance are still 
unclear, several additional studies have suggested that T. 
spiralis may be a cause or a contributing factor to tumor 
development in humans and animals [167, 169, 170].

Trichinella has an unusual but very basic life cycle. 
Once meat carrying tissue cysts has been consumed, the 
intestinal phase starts. Gastric juices and acid in the gut 
release muscle larvae, which reach the small intestine 
after a few hours and invade the enteric mucosa. There, 
they go through four molts to reach the adult stage and 
start mating as soon as two days after infection. Larvae 
move to the striated muscle via the circulatory system. 
Muscle fibers are then reprogrammed by some Trich-
inella species to form a capsule (nurse cells), where the 
infectious larvae mature [163].

The relationship between Trichinella spp. with human 
cancer was first addressed decades ago. Lewy et al. origi-
nally described a case of laryngeal cancer associated 
with Trichinella larvae in 1964 [171]. Further research 
revealed that this type of relationship occurs frequently in 
head and neck malignancies, such as oral cancer, tongue 
carcinoma, and laryngeal cancer, with squamous cell 
carcinoma being the most common neoplasia identified 

[172–175]. Trichinella larvae prefer to reside in the jaws, 
tongue, throat, and eyes, therefore chronic inflammation 
of these muscles was first thought to be the main contrib-
uting factor. Nonetheless, Trichinella has occasionally 
been linked to other tumor types [176].

Cases of Trichinella-associated cancer have also been 
recorded in veterinary medicine, albeit on a smaller scale. 
Moisan et  al. [170] reported trichinosis and oral squa-
mous cell cancer in a 10-year-old domestic shorthair cat. 
Like human oral malignancies, several Trichinella larvae 
were observed in laryngeal muscles and within neoplastic 
tissue. A few years later, another case where trichinosis 
was presumed to cause a non-healing ulcerative lesion 
involving the eyelid and conjunctiva of an 8  years-old 
domestic shorthair cat was described by Saari et al. [177]. 
Phlogistic lesions were prevalent, but mesenchymal neo-
plastic cellular features identified by histology suggested 
low-grade fibrosarcoma as a differential diagnosis. Previ-
ously, a Trichinella-associated melanoma arising from the 
eyelid in a dog was observed [169]. The limited number 
of case reports makes it impossible to rule out an inde-
pendent relationship between parasitic localization and 
neoplastic process, but the similarities between feline, 
canine, and human pictures continue to raise questions 
about the potential of Trichinella for cancerogenesis.

Clonorchis sinensis
Liver flukes are a type of widespread zoonotic platyhel-
minths that can cause liver and bile duct disorders. The 
Opistorchiidae family, which includes Clonorchis sinen-
sis, Opistorchis viverrini, and O. felineus, can have adverse 
effects on both human and animal health, with nearly 45 
million people infected by these fish-borne liver parasites 
[32, 178, 179]. Clonorchis sinensis is endemic in Asian 
countries such as China, the Republic of Korea, northern 
Vietnam, and far-eastern Russia. More than 15 million 
human infections by this species are currently estimated 
[180, 181].

The parasite has a three-host life cycle, with humans 
becoming infected by consuming raw fish containing 
cysts (metacercariae) in the muscles and connective tis-
sues [182]. After being excysted in the human duodenum, 
the metacercariae travel along the bile duct epithelial lin-
ing and mature into adult worms, primarily within the 
intrahepatic bile channels within a month. The adult 
fluke attaches to the bile ducts using a pair of powerful 
suckers and produces eggs that are passed into feces. 
Bithynia spp. snails, the first intermediate hosts [183], 
consume the eggs, which then develop and exit the snails 
as cercariae. The cercariae enter the second intermedi-
ate host, a cyprinoid fish. Piscivorous animals, particu-
larly cats and dogs, act as reservoir hosts for C. sinensis 
and play a role in the epidemiology of the parasite since 
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they are widespread animals and can sustain the parasite 
lifecycle without human involvement [184]. Our under-
standing of this parasite has significantly increased since 
James McConnell discovered C. sinensis in the bile ducts 
of a young Chinese man in 1875 [185]. Inflammation, 
epithelial and adenomatous hyperplasia, mucinous meta-
plasia, cholangiofibrosis, and granuloma development 
are the primary histological features of liver fluke infec-
tion in humans [186].

In 1994, C. sinensis was classified as a probable carcino-
gen to humans (Group 2A). However, thanks to more 
recent and solid evidence [180, 187] it is currently classi-
fied as a highly carcinogenic agent to humans (Group 1) 
[5]. Cholangiocarcinoma is the most dangerous compli-
cation of clonorchiasis: adenocarcinomas make up 70% 
of C. sinensis-induced cancer, while bile duct anaplastic 
and squamous tumors comprise the rest [180, 181, 188]. 
Recent studies indicate that patients with hepatocellular 
carcinoma and C. sinensis infection have a worse progno-
sis, regardless of HBV co-infection [189]. Experimental 
animal models have helped to understand carcinogenic 
mechanisms [190], while there is limited information in 
the literature for domestic animals. Three papers written 
by Hou and colleagues were the first to point out the sim-
ilarities between human, canine, and feline C. sinensis-
induced cancers [191–193].

In a study conducted by Hong Kong University, three 
cases of feline cholangiocarcinoma were examined, two 
of which were spontaneous and one was experimentally 
induced. The study revealed thick-walled second-order 
bile ducts filled with C. sinensis in all three cases [191]. 
Malignant cells, clearly originating from hyperplastic 
adenomatous tissue, were observed along with severe 
fibrosis. Local progression to the diaphragm and metas-
tases to hepatic lymph nodes were also noted [192]. Simi-
lar histopathological lesions were found in an 8-year-old 
female Chow dog by the same group, which supports the 
parasitic etiology of C. sinensis-induced cancer in dogs, 
as well as in humans and cats [193]. As the development 
time for this type of cancer is strongly correlated with the 
lifespan of the host, there appears to be an age cut-off for 
cats and dogs as well, since all cancer cases developed 
in middle-aged individuals [192, 193]. This may help to 
explain the scarcity of such reports, along with the lim-
ited availability of veterinary diagnostic services in highly 
endemic areas.

Opistorchis spp.
Another member of the Opistorchidae family is the car-
cinogenic liver fluke O. viverrini. This trematode is wide-
spread in Southeast Asia, primarily in the Mekong River 
region, where it affects over 8–10 million people [56]. 
Like C. sinensis, its life cycle involves cyprinid fish as the 

second intermediate hosts and aquatic snails of the genus 
Bithynia as the first intermediate hosts. While humans 
are thought to be the primary definitive hosts [194], cats 
and dogs serve as reservoir hosts for O. viverrini and help 
to spread it [195].

Opisthorchiasis is undeniably associated with the 
development of cholangiocarcinoma, as per numerous 
descriptive studies and extensive epidemiological sur-
veys. Indeed, it is classified as a Group 1 carcinogen by 
IARC [5, 32]. Due to the O. viverrini adult worm’s abil-
ity to survive in the human liver for over 10 years, many 
chronic infections lead to the growth of malignant biliary 
duct tumors [56].

Even though any fish-eating mammal might be 
infected, O. viverrini infections in animals are rare [9]. 
Cats have a higher prevalence of O. viverrini infection 
(35.51%) than dogs (0.37%) in Thailand [196], but the 
spread of this parasitism is often underestimated [195, 
197]. In a case report from Thailand, a 12-year-old female 
domestic cat was found to have multifocal, cystic, whit-
ish liver tumors with trematodes inside the biliary ducts 
[198]. Histology revealed a biliary cystadenoma with 
irregular, well-differentiated epithelial cells, multifocal 
trematodes located in several cysts, and infiltration of 
eosinophils and mononuclear cells. Molecular analysis 
confirmed the involvement of O. viverrini [198]. This is 
the only case report documenting the spontaneous for-
mation of biliary cystadenoma in an O. viverrini-infected 
cat, despite the widespread distribution of the parasite. 
Like Clonorchis sp., various biological factors such as the 
life expectancy of piscivorous hosts, and coevolution of 
different O. viverrini strains with human or feline defini-
tive hosts may be involved in this paradoxical picture 
[195]. Socio-sanitary elements, such as public health sur-
veillance and access to standard diagnostics could be at 
play as well [195].

Opisthorchis felineus, the "European liver fluke", is a 
close relative of O. viverrini also suspected of having can-
cer-causing properties. The first description of O. felineus 
was provided in 1884 by Italian scientist Sebastiano Riv-
olta, who called the parasites "Distoma felineum" after 
detecting them in cats and dogs in Pisa (Italy) [199]. The 
geographic range of O. felineus spans from Western Sibe-
ria to Mediterranean Europe [9, 200, 201]. Human infec-
tion is most common in Russia, where up to 40 thousand 
infections are detected each year [9].

Opistorchis felineus circulates across Europe thanks 
to piscivorous domestic and wild animals, with scant 
human involvement until hazardous eating behaviors 
and eating habits occur [199, 201, 202]. According to 
epidemiological research, this fluke infection is cor-
related to severe hepatobiliary illness, as well as being 
a risk factor for cholangiocarcinoma [9, 200, 203]. 
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Experimentally-induced cancer in rodent models shows 
that O. felineus carcinogenic properties are similar to 
those of O. viverrini and C. sinensis [62, 204–207]. How-
ever, no natural-occurring cases of biliary neoplasia in 
other non-human definitive hosts have been reported to 
date [13]. Thus, the differences between O. felineus and 
its well-known cancer-causing relatives and the mecha-
nisms by which this parasite might cause neoplastic 
diseases are still widely unknown. Because there is still 
insufficient epidemiological evidence to support a causal 
relationship between this parasitosis and biliary tract 
cancer, IARC classified Opisthorchis felineus as belong-
ing to Category 3, which includes potential cancer-caus-
ing substances for which there is insufficient evidence of 
their ability to cause cancer in both humans and animals 
[5, 9, 32, 203].

Fasciola spp.
Fasciolosis is a parasitic zoonosis that is often neglected 
in developing countries and is caused by the infection 
of liver flukes belonging to the family Fasciolidae, spe-
cifically Fasciola hepatica and F. gigantica [208]. The 
life cycle of these flukes is indirect, with the intermedi-
ate freshwater snail host being infected by miracidia 
that hatch from eggs shed in feces by the definitive host. 
After reproducing asexually, the cercariae emerge from 
the snail and develop into infectious metacercarial cysts 
attached to aquatic plants. A wide range of vertebrate 
animals can act as definitive hosts by ingesting the meta-
cercariae, leading to widespread transmission and circu-
lation [209]. Domestic livestock and wild species are the 
reservoirs for these parasites across Asia, Africa, Europe, 
and the Americas [210, 211]. Since reports of F. hepatica 
infection in humans are more frequent than those of F. 
gigantica, it is believed that F. hepatica has a higher 
potential for zoonotic spread. Yet, due to limited access 
to healthcare in endemic areas, cases of human infection 
may be overlooked [208, 212].

The parasite burden is related to hepatic lesions in vari-
ous host species. Mechanical injury and inflammation 
are linked to the migration of juvenile flukes through the 
intestinal wall, abdominal cavity, and liver parenchyma, 
as well as the feeding behavior of adult flukes in the bile 
ducts [213]. Although Fasciola spp. are closely related 
to the previously described liver trematodes, there is yet 
no conclusive evidence linking these parasites to human 
cancer [207]. Nonetheless, this fluke has occasionally 
been linked to human and animal disease complications, 
mostly as a cause of liver fibrosis and cirrhosis, compa-
rable to what has been described in other closely related 
veterinary-relevant agents, such the giant liver fluke (Fas-
cioloides magna) [210, 211, 214, 215]. The role of Fasciola 
in carcinogenesis has been hypothesized in two separate 

neoplastic entities in veterinary medicine. In an intrigu-
ing case–control study, Bahrami et al. [216] investigated 
the histological and clinicopathological modifications 
in 49 F. gigantica-infected and 20 healthy cattle from 
the southwest of Iran. In 10 liver samples from infected 
animals, multifocal homogenous populations of tightly 
packed spindle cells with blunt-ended nuclei oriented 
in interlacing fascicles were consistent with leiomyoma 
[216]. Previously, only one case report presenting a case 
of leiomyoma in the end-stage liver of a cow with fascio-
liasis had been published in the literature [217]. Tortuous 
fibrotic areas, cirrhosis, and chronic catarrhal cholangitis 
were the most common lesions caused by Fasciola [216, 
217]. In addition, a recent paper by Shahvazi et al. [218] 
from the same area reported leiomyomas in 44 out of 50 
(90.0%) infected cattle, confirming previous results.

On the other hand, in southern Bohemia, a F. hepatica 
endemic area, Vitovek and colleagues found hepatocellu-
lar carcinomas in 11 livers from cattle in a slaughterhouse 
[219]. The presence of both cancer and Fasciola-induced 
biliary cirrhosis in every case raises the possibility of a 
causative relationship. The higher incidence of this neo-
plasm in the sampled population and the common left 
lobe localization (in which Fasciola is preferentially local-
ized) support the hypothesis.

In humans, hepatocellular carcinoma is a well-estab-
lished sequela of liver disorders, such as hepatitis or 
cirrhosis. However, a similar link is not yet clearly rec-
ognized in veterinary medicine [219, 220]. No evidence 
of cancerogenesis induced by F. hepatica and gigantica 
was reported in humans, except for in vitro studies [210, 
212] and a recent case report of F. hepatica infestation in 
an Indian female with inoperable gallbladder carcinoma 
[221]. Thus, a deeper look into this topic in animals could 
help in the comprehension of this phenomenon.

Platynosomum illiciens
Platynosomum is a genus in the Dicrocoeliidae fam-
ily of biliary trematodes that parasitize birds and mam-
mals distributed worldwide. The parasite found in South 
American cats was previously considered a separate spe-
cies (Platynosomum fastosum) for many years, but is now 
considered a synonym of P. illiciens after a recent taxo-
nomic revision [222, 223]. This parasite also infects non-
felid hosts, which complicates the epidemiologic scenario 
[222]. The life cycle of this parasite requires three inter-
mediate hosts: a mollusk where embryonated eggs 
develop into sporocysts containing cercariae; a terrestrial 
isopod, where the cercariae are released and develop into 
metacercariae (the infective form); and a small vertebrate 
paratenic host, such as a lizard or toad. In the definitive 
hosts, which are generally asymptomatic, adult trema-
todes localize in the choledochus and gall bladder [224]. 
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While most papers reporting this parasitism in differ-
ent parts of the world did not describe cancerogenesis 
[222, 225, 226], seven cases of cholangiocarcinomas in 
adult cats parasitized by P. illiciens were reported in Bra-
zil [227, 228]. The liver tumors were composed of atypi-
cal neoplastic cells arranged in acini, and metastases to 
various organs were noted, with visible pre-neoplastic 
alterations resembling proliferative or chronic inflam-
matory lesions seen in other trematode-induced malig-
nancies [21]. Furthermore, a recent case of spontaneous 
hepatocellular carcinoma in a free-living adult male mar-
moset (Callithrix sp.) was recently observed in combi-
nation with Platynosomum sp. infection in Brazil [229]. 
Although a direct cause-effect link may be incidental, the 
authors could not rule out a potential primary or contrib-
uting oncogenic role of the parasite.

Schistosoma mansoni
Schistosoma, a genus of blood flukes, is responsible for 
infecting 236 million people worldwide, primarily in 
low-income countries [230]. Among the various species, 
only S. haematobium is classified as a Group 1 carcino-
gen by IARC. In contrast, S. mansoni infection is listed 
as Group 3 [5, 8]. The gonochoric adult flukes inhabit the 
mesenteric veins close to the intestine, and infection with 
intestinal schistosomiasis occurs when cercariae, which 
have developed in freshwater snails (intermediate host), 
penetrate human skin. Despite the regular occurrence of 
S. mansoni in wild primates living in endemic regions, it 
is not considered a zoonosis because it primarily affects 
humans [231]. A single report has associated chronic S. 
mansoni infection with spontaneous cancer in a 12-year-
old chimpanzee (Pan troglodytes) born in Sierra Leone 
[232]. Histological analysis of the liver tumor, which 
presented as a single hard nodule, revealed a well-differ-
entiated hepatocellular carcinoma with a trabecular pat-
tern. Serological testing ruled out infections with HBV 
and HCV [232]. Other experimental and clinical reports 
suggest that this parasite may increase the risk of vari-
ous human malignancies, including hepatocellular car-
cinoma, colorectal cancer, bladder carcinoma, prostate 
cancer, and follicular lymphoma [8, 32, 215].

Taenia (Hydatigera) taeniformis
Tapeworms are flatworms belonging to the phylum Platy-
helmintes that can inhabit the digestive tract of several 
species. Infections with tapeworms have significant vet-
erinary and medical repercussions [233]. Members of the 
family Taeniidae (Echinococcus, Taenia, and Versteria 
spp.) require two mammalian hosts in a predator–prey or 
scavenging relationship to complete their life cycles [234, 
235].

Among these, T. taeniaeformis is one of the most 
widely studied and distributed tapeworms in veterinary 
medicine, primarily infecting cats (definitive hosts) and 
rodents/lagomorphs (intermediate hosts) [236, 237]. 
Although isolated cases of human infection have been 
reported, the zoonotic potential is yet unknown [238, 
239]. Cats excrete T. taeniaeformis eggs into the envi-
ronment, which are then consumed by the intermediate 
hosts. The eggs then progress to the metacestode stage 
(Strobilocercus fasciolaris or Cysticercus fasciolaris), lead-
ing to the development of liver cysts [235].

Although infections in rats are frequently subclinical, 
the cancerogenic potential of T. taeniaeformis is widely 
recognized. This parasite has been linked to the devel-
opment of primary hepatic fibrosarcoma in rodents [52, 
240–249]. Additionally, benign hepatic fibromas have 
also been reported [241, 250].

In the early 1900s, it was first hypothesized that liver 
tumors in rats could develop in conjunction with the 
implantation of larvae [52, 241, 242]. Within a few years, 
three independent physicians described the same patho-
logical findings in laboratory rats (Rattus norvegicus). 
Borrel described two tumors in the kidney and in the 
liver of two rats that died in two different labs. In both 
cases, the tumors were attached to a cystic sac containing 
hyaline fluid and metacestodes identified as S. fasciolaris 
[52]. Concurrently, during the systematic examination of 
thousands of wild rats killed in a campaign for the eradi-
cation of plague at the Federal Plague Laboratory in San 
Francisco, McCoy found 11 sarcomas and one fibroma 
associated with S. fasciolaris, all affecting the liver [241]. 
A few years later, Woolley and Wherry confirmed such 
findings by reporting 3 hepatic sarcomas coupled with S. 
fasciolaris infection in wild rats [242]. The three papers 
often described metastases to lymph nodes, mesentery, 
and local invasion.

In numerous experiments, Bullock and colleagues 
exhaustively confirmed malignant transformation of the 
capsular connective tissue surrounding the encysted 
larvae in laboratory rats [251–257]. Further in vitro and 
in  vivo experimental infections helped in the compre-
hension of the transforming mechanism [239, 258–260]. 
Spontaneous T. taeniformis-induced neoplastic cases 
have also been reported in wild [244], laboratory [240, 
245, 248–250], and pet rats [247]. In such investigations, 
large chronic-stage hepatic cysts, inflammation featur-
ing granulation tissue, Kupffer cell infiltration, and scat-
tered lymphocytes were described. The typical hallmarks 
of primary fibrosarcoma were pleomorphic fibroblasts in 
disorganized and centrifugal bundles invading the adja-
cent liver from the capsule, which were described in up 
to 73% of infected animals [240, 248, 249].
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Despite the involvement of numerous intermediate 
species in the life cycle [261–264], the vast majority 
of cases of hepatic fibrosarcoma have been identified 
in rats, with only a few cases reported in mice (Mus 
musculus) [246] and muskrats (Ondatra zibethicus) 
[243]. These findings suggest that the predisposition 
to oncogenesis is partly determined by the host spe-
cies. Furthermore, an outstanding question is why so 
few neoplasms in wild rather than laboratory rats are 
reported, despite thorough examination [265–271]. 
Most tumors are thought to develop between 11 and 
17 months after infection [245, 247, 252, 254]. However, 
younger rats (5–8  months old) were shown to exhibit 
hepatic fibrosarcoma by Mahesh Kumar et al. [240], and 
Al-Salihi et al. [248]. Although this issue is still unclear 
and lab rats’ lifespans might vary significantly, it is con-
ceivable that the prolonged post-infection carcinogenic 
timeframe and the shorter average life expectancy of 
free-living rats (which is often shorter than one year) 
may play a role [162, 272].

Linguatula serrata
The subphylum Crustacea comprises zoonotic parasitic 
arthropods called pentastomes, also known as tongue 
worms, which exhibit wormlike characteristics. One 
of these parasites, Linguatula serrata, has a global dis-
tribution and primarily infects carnivores as definitive 
hosts [273]. The adult parasites reside in the nasal cav-
ity, where they lay their eggs that are excreted in feces 
and nasal mucus. Several intermediate hosts, such as 
fish, rodents, and ungulates, can harbor infectious vis-
ceral larvae after ingesting the eggs. Humans may inad-
vertently serve as intermediate or final hosts following 
the consumption of uncooked meat, contaminated 
water, or raw vegetables [273].

In Italy, Bordicchia et al. reported a case of a 6-year-
old mixed-breed dog with nasal basosquamous cancer 
and concurrent linguatulosis [274]. During autopsy and 
histological examination L. serrata nymphs were found 
in the neoplastic tissue, accompanied by a granuloma-
tous reaction. Given the severe phlogosis observed, a 
causal involvement of the parasite was hypothesized. 
Scant reports on pentastomes and cancer have been 
published in both veterinary and human medicine. 
Pentastomiasis was diagnosed in a 20-year-old female 
oriental small-clawed otter (Aonyx cinereus) with thy-
roid gland carcinoma [275], in a boy with acute leu-
kaemia [276], and in a man with metastatic thyroid 
cancer [277]. Except for the dog described by Bordic-
chia et colleagues the most probable scenario in these 
instances appears to be secondary infection resulting 
from neoplastic debilitation.

Theileria annulata and Cryptosporidium spp.
A fascinating association between parasitic protozoan 
infection and cancer was highlighted in the case of the 
bovine piroplasm Theileria. Theileria annulata and 
Theileria parva are tick-borne haemoprotozoan Api-
complexan parasites. Tropical theileriosis, caused by T. 
annulata and involving macrophages, dendritic cells, and 
B cells, is a fatal leuko-proliferative disease of cattle [278, 
279]. Theileria parva, on the other hand, preferentially 
infects T cells (and less frequently B cells), resulting in 
East Coast fever [278–280]. These parasites have a high 
mortality rate if left untreated [281], and T. parva alone 
kills more than one million cattle annually in sub-Saha-
ran Africa [280]. However, no Theileria species have been 
identified as causing zoonotic diseases [282].

These protozoa are obligate intracellular pathogens, 
where parasites and host cells are inextricably linked. 
As a result, these species have developed mechanisms 
of evolutionary advantage causing hyperproliferation, 
immortalization, and dissemination of the parasitized 
target cells [279, 283, 284]. Such a scenario fits with all 
the features defining a neoplastic phenomenon, except 
that it is reversible [27]. Indeed, etiological treatment 
with theilericidal drugs almost entirely reverses the pro-
cess [278]. Sporozoites are transmitted to domestic or 
wild ruminant hosts by ixodid ticks. Macrophages or 
lymphocytes are invaded by Theileria sporozoites, which 
develop in a multinucleated schizont attached to the 
microtubule organizing center (MTOC) directly in the 
host cell cytoplasm [279, 285]. The cytoplasmic schizont 
can turn its host leukocyte into a continuously replicat-
ing tumor-like cell, promoting parasitic spread. Due to its 
close association with the MTOC, the intracellular schi-
zont is partitioned into both daughter leukocytes during 
each host cell division [285]. During spread, a number of 
schizonts produce merozoites that penetrate red blood 
cells, circulate in the bloodstream as piroplasms, and are 
ingested by feeding ticks, where they produce new infec-
tious sporozoites [27, 278, 279].

Typically, fever, anorexia, lymphoadenomegaly, respira-
tory distress, acute anemia, and jaundice are the major 
clinical signs, whose severity varies amongst different 
cattle breeds [280, 286]. Several organs may be infiltrated 
by schizont-transformed leukocytes resulting in throm-
bosis, parenchymal necrosis, hemorrhage, and inflamma-
tion [280, 287].

Combined infection with bovine leukaemia virus (BLV) 
and T. annulata was documented in a 6-month-old calf 
with a diagnosis of lymphoma [288]. Pleomorphic lymph-
oblasts were seen in swollen lymph nodes, heart, and 
omentum. The authors claim that whereas BLV infec-
tion primarily affects adult cattle, its occurrence in a calf 
could be attributed to concurrent Theileria infection, 
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which may have hastened the neoplastic transformation 
brought on by the retrovirus [288].

There has been a resurgence of interest in Theileria as a 
research model to shed light into the molecular pathway 
involved in neoplastic transformation. Theileria-infected 
cells exhibit uncontrolled proliferation and enhanced 
metastatic potential in rodents [289–291], providing a 
wonderful example of how intracellular parasites interact 
with their host cells to convert the cell phenotype [279, 
284].

Except for Theileria-driven proliferation, there is little 
information on other protozoa of veterinary relevance 
and cancer. Nevertheless, the zoonotic intracellular pro-
tozoa Cryptosporidium spp. have recently attracted inter-
est [11]. The entire life cycle of Cryptosporidium spp. 
takes place in the gastrointestinal tract of a wide variety 
of animal hosts, and infection occurs mainly by inges-
tion of sporulated oocysts in fecally-contaminated water 
and food [11]. Cryptosporidiosis, being associated with 
the development of colorectal cancer in humans [35, 38, 
292], may contribute to the development of malignant 
tumors. Indeed, an association between Cryptosporid-
ium spp. has already been described in experimentally 
infected immunodeficient mice [293, 294].

In spontaneous settings, two papers [295, 296] 
described a link between aural-pharyngeal polyps and 
Cryptosporidium spp. in iguanas. Evidence of Crypto-
sporidium spp. coupled with proventricular metaplasia in 
snowy owls (Bubo scandiacus) was found, too [297]. The 
presence of neoplastic lesions was not described in any of 
these investigations.

Theileria and Cryptosporidium are examples in which 
further research from a veterinary perspective would be 
welcome to improve our understanding of protozoan-
induced cancer.

Carcinogenic mechanisms
Cancer development is a multistep process caused by 
aberrant gene expression via genetic and epigenetic 
mechanisms, which results in neoplastic cell initiation, 
promotion, and finally progression [298]. In recent years, 
there has been significant improvement in the knowledge 
of the molecular mechanisms that guide the host-par-
asite interaction [299], also thanks to numerous in vitro 
and in vivo studies [11, 22]. This has led to a significant 
number of hypotheses relating to how this relationship 
can drive neoplastic development, and consequently to 
potential therapeutic targets. Several pathogenic mecha-
nisms, even bizarre ones, are proposed to explain the 
development of parasite-related tumors. Figure  1 dis-
plays a schematic summary of these mechanisms. Many 
cancerogenic pathways, particularly regarding human 
carcinogens, have been carefully reviewed elsewhere 

[6–8, 29, 30, 35, 300–303]. The next sections will pro-
vide a brief overview of such mechanisms in veterinary-
related parasites.

Chronic inflammation
Around 150  years ago, Rudolph Virchow first proposed 
a link between inflammation and cancer [304]. Since 
then, several authors have investigated this relationship, 
and increasing evidence suggests that inflammatory 
processes are involved in all the phases of carcinogene-
sis [305–309]. Over nearly the entire twentieth century, 
chronic inflammation has been the most widely accepted 
parasite-associated cancerogenic mechanism. In all the 
veterinary cancer-causing parasites reported in Table  1, 
an inflammatory role in cancerogenesis was postulated 
[67, 107, 124, 137, 144, 153, 167, 215, 247, 274, 279]. A 
clear continuum between inflammatory and neoplastic 
lesions, especially for S. lupi, Heterakis spp., T. taeni-
formis, and liver fluke infections, is immediately evident 
[107, 124, 247].

Inflammation promotes cancer in a variety of ways: 
physical damage, oxidative stress, and the release of 
mediators like cytokines, prostaglandins, and growth fac-
tors can cause DNA damage in tumor suppressor genes, 
as well as protein post-translational modification [306, 
307].

Physical host tissue injury during parasite development 
or feeding, along with an active wound-healing mecha-
nism, leads to enhanced cell transformation and prolif-
eration of cancer cells [309]. This is particularly true in 
biliary injury caused by liver trematodes feeding activities 
[31]. Long-lasting cycles of healing and re-injury brought 
on by the fluke suckers cause cells to be prone to accu-
mulate additional lesions and build up strong prolifera-
tive responses via dysregulated signaling pathways [307, 
309].

Secondly, oxidative stress induced during inflam-
mation by reactive oxygen species (ROS) and reactive 
nitrogen species (RNS) is a key factor in parasite-related 
cancerogenesis. Parasitic noxae summon macrophages, 
neutrophils, and eosinophils, that produce reactive com-
pounds such as nitric oxide (NO), and superoxide radical 
 (O2

−) [308, 310], that can lead to DNA damage directly, 
or indirectly by lipid peroxidation, reactive aldehyde 
production, like 4-hydroxy-2-nonenal (HNE), cyclooxy-
genase-2 (COX-2) activation, and 8-oxo-7.8-dihydro-2′-
deoxyguanosine (8-oxodG) release. The latter has been 
used as a biomarker for DNA oxidative damage in a num-
ber of parasite-related malignancies [32, 311].

Thirdly, inflammatory mediators can concur to the 
dysregulation of several signaling pathways, including 
p53, Jak/Stat, retinoblastoma protein (RB), and NF-κB 
[32, 312], with mechanical and free-radical-mediated 
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injuries. Many oncogenes, like p53, SMAD4, RB, EGFR, 
and ERBB2, as well as altered DNA methylation and 
transcriptional profiles, are implicated in parasite-
induced malignancy development [6, 32, 312–315]. 
By increasing the expression of tumor-promoting 
cytokines, the activation of the transcription fac-
tor NF-κB links inflammation to cancer [312]. Other 
molecular processes at play include aberrant stimula-
tion of the Wnt/-catenin, PI3K/AKT/mTORC1 path-
ways and downregulation of p53, RB1, and p16INK4 
expression [306, 314]. Higher levels of pro-inflamma-
tory cytokines, including tumor necrosis factor-alpha 
(TNF-α), platelet-derived growth factor (PDGF), vas-
cular endothelial growth factor (VEGF), transforming 
growth factor-beta (TGF-β), and IL-1, IL-6, and IL-8, 
enhance angiogenesis, metastatic dissemination, and 
cell proliferation [7, 22, 117, 279]. Accordingly, dogs 
with cancer brought on by spirocercosis have consider-
ably higher levels of IL-8, VEGF, and FGF expression, 
compared to non-neoplastic controls [316].

Parasite excretory and secretory products (ESPs)
The development of cancer induced by parasites is not 
solely caused by chronic inflammation, as there are sev-
eral other mechanisms at play. One such mechanism is 
the release of excretory and secretory products (ESPs) 
by the parasite, which are molecules that interact with 
the host and modulate the parasite-host interface. 
ESPs can be released actively through the secretion of 
functional products or passively through the excretion 
of waste products [317]. The role of ESPs in parasite-
induced cancer has been extensively reviewed recently 
[22], and a variety of pro-inflammatory, oxidative, and 
genotoxic biomolecules, growth factors, and proteins 
involved in parasite feeding activity, tissue invasion, 
immunomodulation, and cell proliferation have been 
identified [22, 317]. The complex interplay between 
ESPs and host cells is believed to accelerate and regu-
late the endogenous parasite-related inflammatory 
process. Since ESPs are products of coevolutionary 
processes in which parasites have had to survive in 

Fig. 1 Schematic summary of cancerogenic mechanisms involved in human and animal parasitic infections. ESPs, excretory and secretory products; 
ROS, reactive oxygen species; RNS, reactive nitrogen species. Created with BioRender.com
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hostile environments for extended periods of time, it is 
not surprising that their effects may differ between host 
species and individuals [31]. From a non-evolutionary 
perspective, the different carcinogenic potential of 
similar parasitic agents (eg. Opistorchis viverrini vs O. 
felineus) [62] and the resistance of some host species to 
tumor development would have remained unanswered 
questions [318].

The impact of ESPs on host cellular homeostasis, 
which can contribute to malignant transformation, has 
been studied in Spirocercosis [22], Trichinellosis [167], 
Fascioliasis [218], Opistorchiasis [319], Clonorchiasis 
[320], Schistosomiasis [321], Strobilocercosis [239], and 
Theileriosis [279]. Certain compounds, such as the ferri-
tin heavy chain protein (FHC) generated by C. sinensis, 
can increase the formation of ROS and RNS, as well as 
of endogenous proinflammatory cytokines [320]. Addi-
tionally, Schistosoma can directly release nitrosamines, 
free radicals, beta-glucuronidase, and COX-2 enzymes 
[8, 322]. Together with other fluke-derived metabolites, 
like oxysterols and catechol estrogens, ESPs increase oxi-
dative stress, along with neoplastic risk [206, 319]. NF-κB 
and TNF-α may also be overexpressed directly under 
the action of other C. sinensis ESPs via Toll-like receptor 
stimulation [323], causing a time-dependent rise in pro-
inflammatory cytokines (IL-1 β, IL-6, and TNF-α), and 
some anti-inflammatory cytokines (IL-10, TGF-1, and 
TGF-2) [324]. Other helminth proteins cause abnormali-
ties that are typical of malignancies, such as the inhibi-
tion of apoptosis and epithelial-mesenchymal transition 
(EMT) [7, 22, 167].

Thioredoxin (TRX), thioredoxin peroxidase (TPX), and 
granulin are examples of direct cell mitogens. The gran-
ulin-like growth factor (GRN-1) released by O. viverrini 
or C. sinensis accelerates wound healing, angiogenesis, 
tumor invasion, and metastatic spread, whereas TRX and 
TPX can suppress apoptosis [6, 31, 325]. Additionally, the 
Interleukin-4-inducing principle of Schistosoma mansoni 
eggs (IPSE), an immunomodulatory protein produced 
by Schistosoma genus eggs, was found to play a role in 
promoting endothelial and urothelial proliferation [326]. 
Flukes may expand their food source or enhance their egg 
expulsion by promoting cell proliferation, and carcino-
genesis may be an unintentional result of this route [31, 
326].

The depicted scenario is a very dynamic research area. 
Despite the recent huge advances in proteome analysis, 
the precise mechanisms by which some ESPs induce can-
cer while others do not are still unclear, likewise their 
evolutionary implications [318, 327]. Thus, cancer-caus-
ing parasites other than the well-known human flukes, 
as long as non-cancerogenic parasites that still induce 
severe inflammatory responses or massive proliferative 

changes (e.g. trichostrongylids or coccidia), need to be 
further investigated [22, 328, 329].

Immunomodulation
In order to survive in the host, parasites modulate a 
variety of immunologic processes [330]. A shift in the 
Th1-Th2 balance towards a Th2 response is a com-
mon outcome of most helminth infections in humans 
and animals, which inhibits Th1 cell-mediated immu-
nity involved in parasite clearance, but also in tumor 
immunosurveillance and rejection [30, 167, 330–332]. 
Chronic infections sustain the increased production of 
Th2-associated cytokines (IL-4, IL-5, IL-9, IL-10, and 
IL-13), perpetuating the inhibition of Th1 responses [30, 
330]. Interleukin-4-inducing principle (IPSE), a protein 
released by Schistosoma, activates basophils and mast 
cells to secrete IL-4 and IL-13, especially during S. man-
soni eggs deposition [6, 326, 333]. The Th1/Th2 regula-
tory gene suppressor of cytokine signaling 5 (SOCS5) 
and interferon-gamma (IFN-γ) have been demonstrated 
to be significantly modified by O. felineus [334]. In addi-
tion, immunomodulatory substances, such as galectin 
found among S. lupi-ESPs, may also aid the immunoedit-
ing process [335]. Consequently, the growth of Treg cells 
and alternative activation of M2-polarized macrophages 
brings along an increase in parasite-host tolerance, tissue 
repair, and suppression of antitumor immune responses 
[330, 332, 336].

Increased susceptibility to environmental carcinogens
In recent years, researchers have studied an indirect car-
cinogenic process, particularly through experimental 
trematode infections in animal models [6]. This process 
may result in reduced clearance of food or environmen-
tal carcinogenic substances (such as nitrosamines, aro-
matic amines, and aflatoxins) due to mechanical damage, 
a persistently inflammatory environment, and release of 
parasite ESPs, which can lead to key metabolic hepatic 
enzymes becoming less active [21, 30].

Experimental infections with liver (Opistorchis spp., C. 
sinensis), and blood (Schistosoma spp.) flukes have been 
found to cause inflammatory changes in the absence of 
carcinogens [6, 337]. However, the development of neo-
plasia required treatment with low doses of nitrosamines 
(which are not cancerogenic by themselves) [6, 7, 31, 308, 
337]. In fact, when hamsters’ bile ducts were surgically 
tied to mimic the damage caused by fluke infections, sub-
carcinogenic oral doses of nitrosamines were demon-
strated to cause biliary tumor development [338].

Older theories attributed cancer initiation to nitrosa-
mines, with parasite infection providing the prolifera-
tive stimulus to start cell promotion [339]. However, liver 
fluke infection can also enhance nitrosation of amine 
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precursors. Opistorchis and Fasciola infections have been 
linked to induction of the CYP2A5 enzyme, an isoform 
of cytochrome P-450 (CYP), which participates in meta-
bolic activation of carcinogens, such as N-dimethylni-
trosamine (NDMA) and aflatoxin B1 (AFB1), with high 
levels of NDMA found in the bile duct in humans and 
hamsters [308, 340, 341]. Schistosoma mansoni has also 
been experimentally linked to metabolic activation of 
procarcinogens, with a rise of 300% in aflatoxin metab-
olites [342]. These findings suggest that parasites play a 
role in amplifying the effects of environmental carcino-
gens, thereby indirectly raising the risk of cancer.

Synergic parasite‑virus coinfections
Cancerogenesis is a multistep and multifactorial pro-
cess, and coinfection with two or more pathogens has 
been linked to higher cancer risk than infection with 
either pathogen alone [343]. For instance, many stud-
ies have shown the synergistic effects of EBV, and the 
haemosporidian protozoan Plasmodium falciparum (a 
causal agent of malaria) in the development of Burkitt’s 
lymphoma (BL) [344]. BL, the most common childhood 
cancer in Africa, is an aggressive B-cell malignancy and 
has a higher incidence where malaria is endemic [345]. 
The mechanisms involved in cancerogenesis include 
the cysteine-rich interdomain region 1α (CIDR1α)-
mediated expansion of EBV-infected B-cell populations, 
along with B-cell activation-induced cytidine deaminase 
(AID)-related c-myc and IgH translocations, discussed in 
detail elsewhere [343, 346, 347]. Even though malaria has 
limited veterinary implications, the discovery that the 
zoonotic simian protozoa, P. knowlesi, had been misdi-
agnosed as P. malaria for years [348], and the fact that 
other unknown Plasmodium sp. lineages may be largely 
overlooked in human medicine [349], suggest that fur-
ther research is warranted to explore the potential can-
cerogenic role of other simian and avian forms of malaria 
[350].

Strongyloides stercoralis causes a chronic parasitic 
infection in humans and animals known as strongyloi-
dosis, which is negatively influenced by co-infection with 
human T-cell leukemia/lymphoma virus type 1 (HTLV-
1) [351, 352]. In fact, the odds for disseminated stron-
gyloidiasis and hyperinfection syndrome are higher in 
HTLV-1 co-infected patients [351]. However, co-infec-
tion may also have a detrimental influence on the out-
come of HTLV-1 infection [353]. Adult T-cell Leukemia/
Lymphoma (ATLL) is the most severe manifestation of 
HTLV-1 infection, and S. stercoralis may be involved in 
the oncogenesis as suggested by increased HTLV-1 pro-
viral loads and the earlier onset of ATLL in S. stercora-
lis-positive carriers [353, 354]. In particular, the parasitic 
infection may have a role in promoting HTLV-1-infected 

cell proliferation and immune-related genes expression, 
which may play a significant role in the development of 
ATLL [352].

Liver sarcoma induced by T. taeniformis [244, 247] 
and Ollulanus-related stomach cancer have also been 
hypothesized to arise in patients coinfected by viruses 
[144]. There is evidence to suggest that both S. mansoni 
and C. sinensis may indirectly potentiate the development 
of hepatocellular carcinoma by HBV and HCV [189, 215]. 
Lastly, the association between T. annulata and BLV-
induced lymphoma in calves described by Al-Dubaib 
et  al. [288] may be explained by Theileria-induced lym-
phoid proliferation boosting neoplastic transformation 
induced by the retrovirus.

Parasite‑Microbiota interactions
The role of commensal bacteria in cancer development 
has gained momentum in recent years, leading to a surge 
of research on the topic [355]. A growing body of evi-
dence suggests that the gut, oral, and vaginal microbi-
omes may influence cancer development through various 
mechanisms [356, 357].

The composition of the host’s microbiota is significantly 
shaped by several parasites [358, 359]. Therefore, the link 
between parasite infection and cancer may depend on 
the host’s microbiome composition at the time of infec-
tion, making it even more challenging to prove [360]. 
For example, Trichomonas vaginalis releases ESPs that 
cause a shift in the vaginal microbiota from lactobacilli to 
human bacterial vaginosis causative agents, including the 
cancer-associated microorganism Chlamydia trachoma-
tis [361].

Schistosoma species also promote microbiome varia-
tions, favoring communities of nitrate-reducing bacteria 
that, in turn, form nitrosamines [360, 362, 363]. Further-
more, O. viverrini may introduce the carcinogenic bac-
terium Helicobacter pylori and other bacteria into the 
biliary tree [364, 365].

The fact that bacteria are present within or associated 
with most cancer-causing parasites has not received suf-
ficient attention [244, 360]. Further research on the rela-
tionship between microbiota, parasites, and cancer will 
undoubtedly be crucial in clarifying the infectious causes 
of cancer [359].

Hijacking host‑cell metabolism
The neoplastic transformation of bovine leukocytic cells 
induced by Theileria represents a distict mechanism 
involved in parasite-driven cancerogenesis. Theileria has 
evolved complex strategies to interact with host cell met-
abolic pathways and exploit their genetic and epigenetic 
machinery to alter host cell phenotype to a cancer-like 
one [279, 284, 291]. Living freely in the host cytoplasm, 
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it secretes ESPs that act directly as "epigenators" [366]. 
These reversible signals trigger epigenetic initiators that 
interact with chromatin and its transcription [290, 366]. 
Another hallmark of Theileria-induced transformation is 
the production of the "Warburg effect" metabolic signa-
ture, which shifts host metabolism from oxidative phos-
phorylation to aerobic glycolysis [35, 284, 367].

During Theileria-induced host cell transformation, the 
anti-apoptotic c-Jun N-terminal kinase (JNK) and host 
nuclear factors c-Myc, NF-κB, and AP-1 are among the 
signaling pathways affected [28, 279, 368]. Moreover, 
Theileria alters host cell kinematics, enhances motil-
ity, and causes infected host cells to behave as leukocyte 
metastases [27, 369].

The parasite homolog of Phosphorylation-Dependent 
Peptidyl-Prolyl Cis/Trans Isomerase PIN1 (TaPIN1) 
[284, 370] is a major epigenator expressed by transform-
ing Theileria spp., but not by non-transforming or closely 
related apicomplexan parasitic species. The TaPin1 pro-
tein interacts with two of the main host signaling path-
ways involved in proliferation (via Fbw7 ubiquitin ligase, 
c-Jun transcription factor, and onco-miR-155 overexpres-
sion) [370, 371], and metabolic homeostasis (via PKM2 
through HIF1α transcription factor) [284]. Alongside 
D-2-hydroxyglutarate (D-2-HG), which inhibits histone 
lysine demethylases (KDMs) and the DNA methylating 
Ten-Eleven Translocation (TET) enzyme family [279, 
372], it represents the likeliest inducer of tumor-like 
phenotype.

Cancer arising in parasites
A 2015 report by Muehlenbachs and colleagues [373] 
describes a peculiar interaction between host and para-
site during cancerogenesis. An HIV-positive patient 
infected by dwarf tapeworm (Hymenolepis nana) pre-
sented a metastatic neoplasm of unknown origin. A 
non-human origin was postulated by neoplastic cell mor-
phology. Further immunohistochemical and molecular 
analysis confirmed that malignant cells arose from the 
worm H. nana and invaded the host’s tissues [373], indi-
cating that a carcinogenic mechanism may also occur in 
the parasite itself. In this respect, it has been proposed 
that the absence of typical host-defense signals (due 
to immunodeficiency) can lead to aberrant tapeworm 
growth, tissue spread, and ultimately neoplasia in the 
parasite as well [374]. This phenomenon may be wide-
spread in human and veterinary medicine [375]. Numer-
ous reports of aberrant transformation among cestodes 
that infect humans and other animals, including Meso-
cestoides [376], Versteria [377, 378], and Spirometra spe-
cies [379–381] have been published. However, caution is 
needed when distinguishing a true neoplastic phenom-
enon from parasite life cycle stages based on abnormal 

larval proliferation, as in the enigmatic case of the fatal 
zoonotic tapeworm Sparganum proliferum [375, 382]. 
From a broader perspective, this scenario has led to the 
theorization of new and unconventional interactions 
between host and parasite [299].

Cancer in non-human hosts has a wide spectrum of 
biological features and veterinary oncology is famil-
iar with atypical routes of tumor transmission, such as 
transmissible infectious cancers in dogs, Tasmanian 
devils, golden hamsters, and marine bivalves [25]. Thus, 
research in the veterinary field could play a significant 
role in investigating this phenomenon.

Antitumor activity
So far, we have explored the role of parasitic diseases as 
cancer inducers or promoters. However, in recent years, 
13 parasitic agents, some of which are familiar to veteri-
narians (such as Toxoplasma gondii, Echinococcus gran-
ulosus, Trichinella spiralis, and Toxocara canis), have 
been investigated as mediators of anti-tumor responses, 
further complicating an already complex picture [383]. 
Several anti-tumor mechanisms, including the sharing of 
common antigens and the enhancement of active tumor 
surveillance via antibody-dependent cellular cytotoxic-
ity (ADCC), have been proposed and detailed extensively 
elsewhere [384–386]. A comprehensive insight into these 
mechanisms is beyond the scope of this paper. However, 
it cannot be denied that this paradoxical dual-role of par-
asites emphasizes even more how much the host-parasite 
interaction affects the etiopathogenesis of cancer and 
how research into this relationship can benefit both pre-
vention and treatment.

Conclusive remarks
In this paper, the cancerogenic roles of 15 helminths, one 
arthropod, and two protozoa of veterinary interest were 
discussed through an extensive literature review. We 
included several wild and domestic animal species, along 
with different neoplastic histotypes, such as carcinomas, 
sarcomas, melanomas, lymphoma, and epithelial and 
mesenchymal benign tumors. We covered a large span of 
research from different historical periods, starting from 
the story of the first hypothetical cancer-causing parasite 
to recent Theileria spp. molecular investigations. In the 
last part of the paper, a veterinary-oriented overview of 
the cancerogenic mechanisms involved in the parasite-
host dialogue was provided. The link between chronic 
inflammation and cancer is a well-known phenomenon, 
but parasites can also encourage additional, even bizarre 
mechanisms to further promote malignancy. Given the 
heterogeneity of the various types of tumors and para-
site species, there is expected to be variability in patho-
genetic mechanisms. The important role played by the 
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host species and strain-related or individual factors in the 
interaction with parasites emerges transversally. Various 
strains of the same parasite could bring along variations 
in host preference and pathogenicity, as with O. viverrini.

Another essential issue related to the development of 
cancer after long post-exposure intervals is the lower 
average age of many domesticated species compared to 
humans. This aspect may help explain the shortage of 
veterinary reports, which could be hiding the true can-
cerogenic potential of some parasitic agents.

Drawing conclusions on the association between can-
cer and some of the parasite infections listed in the first 
part of this review is challenging, and our knowledge will 
remain incomplete until reproducible epidemiologic and 
experimental data are available. However, the aim of the 
paper was to shed light on the current knowledge in the 
field from a veterinary perspective, since a comprehen-
sive and updated work in such a dynamic scenario was 
lacking. We hope that this paper can help further inves-
tigations on cancer-causing parasites in veterinary medi-
cine and stress their importance as useful spontaneous 
animal models in a One Health perspective.
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