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Abstract 

Background:  The most common type of cancer of the digestive system is hepatocellular carcinoma. In China, many 
patients harbour HBV. The lin28B/Let-7c/MYC axis is associated with the occurrence of many cancers. Therefore, we 
aimed to illuminate the function of the lin28B/Let-7c/MYC axis in hepatocellular carcinoma. We aimed to evaluate the 
critical involvement of lin28B and Let-7c in the carcinogenesis of human hepatocellular carcinoma (B-HCC).

Methods:  Data from the GEO database were used to analyse differentially expressed genes and IRGs. A pro-
tein − protein interaction (PPI) network and Venn diagram were generated to analyse relationships. Real-time RT-PCR, 
Western blotting, and cell counting kit-8 assays were used to examine the association of lin28B, Let-7c, and MYC with 
cell proliferation.

Results:  A total of 2552 functionally annotated differentially expressed RNAs were analysed in HBV patients from 
the GSE135860 database. In addition, 46 let-7c target genes were screened in HBV patients, and the interactions 
were analysed through PPI network analysis. The results confirmed that Let-7c and its target genes play a key role in 
HBV-related diseases. Next, we discovered a gradual decrease in Let-7c expression during the progression from HBV-
associated chronic hepatitis (B-CH) and HBV-associated liver cirrhosis (B-LC) to B-HCC. We found evidence for a nega-
tive association between lin28B expression and Let-7c expression. The expression of MYC was obviously upregulated 
when Let-7c was inhibited.

Conclusion:  Our results highlight that Let-7c and lin28B participate in the carcinogenesis of HBV-associated diseases 
through the lin28B/Let-7c/MYC axis.
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Background
The most common type of cancer of the digestive sys-
tem is hepatocellular carcinoma (HCC). According to 
an investigation in 2011, the rates of malignant tumour 
morbidity and death have increased over time [1–3]. 
HBV infection may induce chronic hepatitis (HBV-CH), 

HBV-associated liver cirrhosis (B-LC), and hepatocellular 
carcinoma (HBV-HCC). In China, 80% of HCC cases are 
associated with HBV [4]. Additionally, in Hebei Province, 
HBV-HCC presents crucial risks that shorten life expec-
tancy [5]. Ultimately, it is fundamentally important to 
reveal the formation mechanisms of HBV-HCC.

Various cancers, such as gastric cancers and renal cell 
carcinoma, have been extensively studied. The Let-7c 
family, MYC and lin28B are closely related in the car-
cinogenesis of gastric cancers and renal cell carcinoma 
[6–8]. Let-7 family microRNAs have biological functions 
and biogenesis that can be suppressed through the bind-
ing of lin28B to the terminal loop of Let-7 precursors. In 
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the context of carcinogenesis, cell proliferation, apoptosis 
and migration, this process significantly decreases Let-7 
target gene expression [9, 10].

A homologous gene of lin28A called lin28B contains 
a retroviral-type zinc finger and a cold shock domain 
[11]. The ubiquitous expression of lin28A and lin28B in 
embryonic stem cells is associated with maintenance of 
pluripotency and embryonic differentiation [12]. The sig-
nificant prognostic value of lin28A and lin28B has been 
confirmed [13]. However, lin28B has demonstrated more 
frequent upregulation and a close relationship with vari-
ous human cancers [14, 15]. Additionally, lin28B pro-
motes cancer cell migration and cancer progression, 
metastasis, and recurrence among colorectal cancer 
patients.

In recent studies, Let-7 family members have been 
associated with the tumour microenvironment and 
clinical outcome [16, 17]. In this study, we assessed the 
expression of all Let-7 family members in serum speci-
mens while analysing the significance of the correlations 
between Let-7c, lin28B, and MYC. As Let-7c inhibits rep-
lication of hepatitis C virus, we also focused on the physi-
ological action on HCC tissues [18]. In HCC tissues, we 
measured the expression of Let-7 family members and 
investigated whether Let-7c expression correlates with 
HCC TNM stage. Additionally, Let-7c is known to have a 
close link with HCC prognosis [19, 20]. Lin28B and Let-
7c also participate in other kinds of cancers. In papillary 
thyroid carcinoma, a study showed that the Lin28A/Let-
7a/MYC pathway plays an important role in cell growth 
and malignant behaviour [21]. Additionally, in alcoholic 
liver injury, there is negative feedback between lin28B 
and Let-7 in the activation of hepatic stellate cells [22]. 
Therefore, we tested the expression of all mature Let-7 
family members and MYC in serum samples taken from 
patients carrying HBV. From these data, we analysed the 
overall effects of the lin28B/Let-7c/MYC axis on hepatic 
carcinogenesis.

Methods
Data collection
The dataset selection criteria were as follows: 1. tran-
script profiling (transcriptomic) data including RNA-seq 
data; 2. accessible basic clinicopathological parameters 
(stage and OS information included); and 3. sample size 
exceeding 50 subjects. 1 dataset, namely, GSE135860, was 
extracted from https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​
acc.​cgi?​acc=​GSE13​5860. We assessed the expression 
profiles of each dataset manually. A total of 6 datasets 
were enrolled. The GEO approved publication guidelines 
were complied with, and the data were extracted from 
the database. Therefore, the approval of the ethics com-
mittee was not required.

Identification of DEGs
We utilized R software’s limma package [23] to conduct 
differential gene analysis by using cut-off values set at 
false discovery rate (FDR) < 0.05 and log2 | fold change 
|> 1. Based on these results, we acquired an itemized 
list of significant DEGs (differentially expressed genes) 
in the expression matrix. R software’s limma package 
was used to carry out the differential gene analysis. A 
false discovery rate (FDR) < 0.05 and log2 | fold change 
|> 1 were employed as cut-off values.

IRG function and pathway enrichment analyses
Necessary information for IRG biological pathway and 
functional analyses was obtained. A GO analysis of 
biological process (BP), molecular function (MF), and 
cellular component (CC) terms was performed. The R 
package clusterProfiler [24] was used for Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis. A false discovery rate (FDR) < 0.05 
was considered statistically significant.

Protein–protein interaction (PPI) network
The PPI network was generated by the STRING data-
base [25] through Cytoscape software [26]. Individual 
networks with 10 or more nodes were included, and 
those with fewer than 10 nodes were excluded. In each 
network node, the grade of the connectivity was com-
puted, and the clusters were collected according to 
their typology to trace densely connected regions by 
molecular complex detection (MCODE).

Clinical samples
All serum samples, which included the serum samples 
of eighty-nine HBV-CH, ten HBV-LC, and eight HBV-
HCC patients, were collected from Chiba University 
Hospital in Japan. The diagnosis of all the patients was 
based on pathological sections taken during surgical 
resection or liver biopsy, along with the detailed data 
of the B-HCC and B-LC/CH patients, which is item-
ized in Table  1. Use the METAVIR Score to under-
stand the stages of liver fibrosis, and patients with F4 
grade was diagnosed LC. The clinical characteristics of 
HBV markers were showed in Table 2. Serum samples 
and tissue samples were stored at − 20 °C and − 80 °C 
freezers, respectively, until need for use arose.

Cell culture
HepG2.2.15 cells containing the complete HBV genome 
and supporting the assembly and secretion HBV DNA, 
were obtained from translational medicine research 
center (North Sichuan Medical College, Nanchong, 
China). We cultured human hepatoma HepG2 cells 
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in Dulbecco’s modified Eagle’s medium, which we 
obtained from Invitrogen (Carlsbad, CA, USA). More 
specifically, the medium contained 10% heat-inacti-
vated foetal bovine serum, 100 units/ml penicillin, and 
100  µg/ml streptomycin from Sigma (St. Louis, MO, 
USA), and cells were cultured under a 5% CO2 atmos-
phere at 37 °C.

Real‑time reverse transcription quantitative polymerase 
chain reaction (Real‑time RT–qPCR)
We extracted total RNA from serum samples and HBV-
paired serum samples. We used the standard protocols 
from the TaqMan microRNA Reverse Transcription 

kit (Applied Biosystems, California, USA) and TaqMan 
Universal Master Mix (Applied Biosystems) to perform 
reverse transcription and real-time PCR, respectively. 
The lin28B primers were as follows: 5’-CAT​GGT​GGC​
AAA​CTG​CCC​ACA​TAA​-3’ (forwards) and 5’-TTC​GTG​
GAG​GAA​GCT​TCT​TGA​GGT​-3’ (reverse). To normal-
ize variance, we utilized GAPDH as an endogenous con-
trol. The primers were 5’-AGC​CTC​AAG​ATC​ATC​AGC​
AATG-3’ (forwards) and 5’-TGT​GGT​CAT​GAG​TCC​
TTC​CACG-3’ (reverse). We obtained the Let-7c prim-
ers (479,365, Applied Biosystems, California, USA) from 
Applied Biosystems, and cel-miR-39 and U6 (4,427,975, 
Applied Biosystems, California, USA) were used as 
endogenous controls. We utilized relative quantification 
(2−ΔCT) to compute fold changes.

Cell proliferation assay
Using a cell counting kit-8 (CCK-8) assay kit (Dojindo, 
Kyushu Island, Japan), we assessed cell proliferation. In 
96-well plates, we cultured HepG2 cells separately at a 
density of 5000 cells/well overnight. We transfected the 
cultures with Let-7c inhibitor and control. After 24  h, 
48 h, 72 h, and 96 h of transfection, 10 μl of CCK8 solu-
tion was added to each well. The cells were cultured 
for 3  h. Using a Glomax multidetection system (Pro-
mega, Wisconsin, USA) according to the manufacturer’s 
instructions, we detected the absorbance level at 450 nm.

Western blotting
The cells were transfected with a Let-7c inhibitor. Addi-
tionally, 1X SDS lysis buffer was used to lyse the cells. 
SDS-PAGE was used to isolate proteins, which were 
transferred onto PVDF membranes. MYC (#9402, Cell 
Signaling Technology, Massachusetts, USA) and GAPDH 
(10,494–1-AP, Proteintech, Wuhan, Hubei, China) stain-
ing was detected. The Odyssey CLx Infrared Imaging 
System (LI-COR Biosciences, Lincoln Nebraska, USA) 
was used to visualize immunoreactive bands.

Statistical analysis
We executed the data analysis using SPSS Graduate Pack 
21.0 (IBM, New York, USA), GraphPad Prism 5 software 
(GraphPad Software, San Diego, USA), or Student’s t test. 
The cut-off for statistical significance was P < 0.05.

Results
Differentially expressed RNAs and functional annotation 
in HBV patients from the GEO database
A total of 3 HBV samples and 3 control samples were 
obtained from the GSE135860 dataset, with 23,949 RNAs 
measured for each. According to the differential analysis 
by the Wilcoxon test, we identified 2552 mRNAs as sig-
nificantly differentially expressed in the HBV compared 

Table 1  Clinicopathological characteristics of B-CH, B-LC and 
B-HCC patients

Groups Observation index P50 (P25, P75)

B-CH n 90

Age 38.00 (33.00, 47.00)

Gender

  Female 23

  Male 67

AST (IU/L) 58.00 (32.25, 104.50)

ALT (IU/L) 93.50 (43.00, 177.75)

γGTP (IU/L) 39.00 (26.00, 64.50)

PLT (× 109/L) 178.00 (150.25, 210.25)

ALB (g/L) 4.20 (4.03, 4.48)

HBV-DNA 7.10 (4.20, 7.60)

B-LC n 10

Age 53.50 (48.75, 54.75)

Gender

  Female 3

  Male 7

AST (IU/L) 69.00 (45.25, 82.00)

ALT (IU/L) 83.00 (40.75, 100.00)

γGTP (IU/L) 48.50 (39.00, 78.25)

PLT (× 109/L) 138.00 (87.00, 180.25)

ALB (g/L) 4.00 (3.28, 4.08)

HBV-DNA 6.20 (3.50, 7.30)

B-HCC n 8

Age 50.00 (44.00, 65.00)

Gender

  Female 4

  Male 4

AST (IU/L) 33.50 (25.50, 42.75)

ALT (IU/L) 35.00 (21.75, 62.00)

γGTP (IU/L) 42.50 (22.00, 71.50)

PLT (× 109/L) 109.50 (86.50, 138.25)

ALB (g/L) 3.95 (3.80, 4.13)

HBV-DNA N. D
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with normal tissue samples, and the results are displayed 
in the volcano plot in Fig.  1. We also analysed these 
mRNAs using the R software package clusterprofifiler 
to identify the functions linked to the different mRNAs. 

This evaluation revealed enrichment of 321 GO terms 
along with 9 KEGG pathways (FDR < 0.05). We chose to 
show the top 9 GO terms and 20 KEGG pathways of the 
DEmRNAs based on the gene count in Figs. 2 and 3.

Table 2  HBV serological markers characteristics of participants, number (%)

a DEP: dual-positivity for both HBeAg and anti-HBe
b Compared 3 groups (B-CH, B-LC and B-HCC), calculated by Chi-square test
c P < 0.05, compared between B-CH and B-LC, calculated by Chi-square test
d P < 0.05, compared between B-CH and B-HCC, calculated by Chi-square test
e P < 0.05, compared between B-LC and B-HCC, calculated by Chi-square test

HBsAg anti-HBs HBeAg anti-HBe DEPa HBV DNA

Total  +  100 (92.59) 3 (2.78) 74 (68.52) 45 (41.67) 13 (12.04) 89 (82.41)

 −  8 (7.41) 105 (97.22) 34 (31.48) 63 (58.33) 95 (87.96) 19 (17.59)

B-CH  +  82 (91.11) 3 (3.33) 68 (75.56) 31 (34.44) 11 (12.22) 79 (87.78)

 −  8 (8.89) 87 (96.67) 22 (24.44) 59 (65.56) 79 (87.78) 11 (12.22)

B-LC  +  10 (100.00) 0 5 (50.00) 7 (70.00)c 2 (20.00) 9 (90.00)

 −  0 10 (100.00) 5 (50.00) 3 (30.00) 8 (80.00) 1 (10.00)

B-HCC  +  8 (100.00) 0 1 (12.50)d 7 (87.50)d 0 1 (12.50)d,e

 −  0 8 (100.00) 7 (87.50) 1 (12.50) 8 (100.00) 7 (87.50)

P valueb N.S N.S  < 0.05  < 0.05 N.S  < 0.05

Fig. 1  Volcano plot of differentially expressed mRNAs
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The relationships among the let‑7c target genes expressed 
in HBV patients
We found 129 HBV-related upregulated genes in 
the GSE135860 dataset, and 46 common genes were 

identified by the intersection of the 129 HBV-related 
upregulated genes with 4430 Let-7c target genes from 
TargetScan, Tarbase, miRDB and miRanda. Based on 
the resulting 46 genes, a Venn diagram was constructed 

Fig. 2  Gene ontology and KEGG pathway functional enrichment analyses of the differentially expressed mRNAs a GO biological function terms b 
GO cell component terms c GO molecular function terms
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(Fig.  4a). Using STRING, we generated a PPI network 
that included 22 edges and 46 nodes to study the inter-
actions among the MYC genes (Fig.  4b). We found that 
MYC was most strongly correlated with other genes 
in the PPI network, including CDH1, CHD1, COX4I1, 
FOXP1, MEF2C, MYBL1, PPP1CA and PTMA.

There was a significant reduction in the expression 
of Let‑7c in HepG2.15 cells
In our study, we analysed the expression of all Let-7 fam-
ily members, including Let-7a-5p (Let-7a), Let-7b-5p 
(Let-7b), Let-7c, Let-7d-5p (Let-7d), Let-7e-5p (Let-7e), 
Let-7f-5p (Let-7f ), Let-7 g-5p (Let-7 g), Let-7i-5p (let-7i), 
Let-7a-3p, Let-7a-2-3p, Let-7b-3p, Let-7d-3p, Let-7e-3p, 
Let-7f-1-3p, Let-7f-2-3p, Let-7  g-3p, let-7i-3p, and miR-
98-5p. Our results demonstrated that the expression of 
Let-7a-3p, Let-7a-2-3p, Let-7b-3p, Let-7d-3p, Let-7e-3p, 
Let-7f-1-3p, Let-7f-2-3p, Let-7  g-3p, let-7i-3p, and miR-
98-5p was less than that in normal hepatocytes (data not 
shown). In hepatocytes, members with increased expres-
sion were Let-7a, Let-7c, Let-7e, Let-7i, and Let-7  g, 
while those with decreased expression were Let-7f, Let-
7d, and Let-7b. The member with the highest expression 
in hepatocytes was Let-7a. In HBV-associated hepatic 
tumour tissues (compared to adjacent tissues), the down-
regulation of almost all Let-7 family members expression 
was evident along with significant reduction of Let-7c 
expression (P < 0.05) (Fig. 5). These results led us to focus 
on Let-7c for further research.

Let‑7c inhibition promoted HepG2 cell proliferation 
and the expression of MYC
Shi demonstrated a downward trend in the expression 
of Let-7c from normal control to chronic hepatitis, liver 
cirrhosis, adjacent nontumour, and HCC samples [20]. 
However, the result was mainly derived from liver tis-
sues. To date, the expression of Let-7c in serum samples 
has not been studied. Here, the expression of lin28B in 
B-HCC was elevated. The data showed that lin28B and 
Let-7c had a negative correlation, which led to the analy-
sis of Let-7c expression in B-HCC.

We inhibited Let-7c in HepG2 cells. The results 
showed successful significant inhibition of Let-7c 

expression (P < 0.05) (Fig. 6a). We also used the CCK-8 
assay to examine the proliferation of HepG2 cells. The 
results showed that proliferation was evidently pro-
moted after 24 h of cultivation. However, after 72 h, the 
rate of promotion was slightly decreased (Fig. 6b).

After Let-7c was inhibited, we used the CCK-8 assay 
to detect the proliferation of HepG2 cells. We cultured 
HepG2 cells for 96  h. The proliferation of the HepG2 
treatment groups was promoted when the cells were 
cultured for more than 24  h. Additionally, the treat-
ment groups were maintained for 48 h, 72 h, and 96 h 
of cultivation (Fig.  6b). Western blotting detected the 
expression of c-Myc, which was obviously promoted 
when Let-7c was inhibited (Fig.  6c). The inhibition 
of Let-7c expression led to the upregulation of MYC 
expression.

The expression of lin28B in B‑HCC samples 
was upregulated: the expression of Let‑7c decreased 
gradually with liver cirrhosis development
In contrast to the B-LC samples, there was clear upreg-
ulation of lin28B in the B-HCC samples. We used real-
time PCR to detect expression. Overall, the results were 
statistically significant at P < 0.05 (Fig. 7a). Furthermore, 
we detected the expression of Let-7c in 99 cirrhosis sam-
ples and 8 B-HCC samples. Among all of the samples, F1 
samples showed the highest expression of Let-7c, while 
B-HCC samples showed the lowest expression of Let-7c. 
This gradual decreasing trend in the expression of Let-7c 
with progression of liver cirrhosis is an important discov-
ery (Fig. 7b).

In addition, the expression of Let-7c was detected 
when samples were divided into a HepG2 group and 
HepG2.2.15 group infected by HBV. The results were 
encouraging. The expression of Let-7c was significant 
altered (P < 0.05) (Fig. 7c).

The expression of Let‑7c was related to the levels of HBV 
DNA and total bilirubin (T‑Bil) in serum
The expression of Let-7c was negatively correlated with 
the level of HBV DNA, and the result was statistically 
significant (P = 0.043) (Fig. 8a). The levels of HBV DNA, 
T-Bil and Let-7c in HBV-CH, HBV-LC and HBV-HCC 
were analyzed separately. All data of HBV DNA, T-Bil 
and Let-7c had no significant difference among three 
groups (Additional file  1: Fig.  S1). The expression of 
Let-7c was positively correlated with the level of T-Bil 
in serum. This result was also statistically significant 
(P = 0.029) (Fig. 8b).

Fig. 3  Gene ontology and KEGG pathway functional enrichment 
analyses of the differentially expressed mRNAs. KEGG pathway 
functional classification and annotation
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Fig. 4  a Venn diagram of HBV-related upregulated genes and Let-7c target genes b Network map showing the interplay of Let-7c target genes
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Discussion
In our study, there was evident downregulation of the 
expression of Let-7 family members in hepatic tumour 
tissues, with Let-7c having the most significant reduc-
tion (P < 0.05) in HBV-associated hepatic tumour tissues. 
The expression of lin28B in B-HCC tissue samples was 
apparently higher than that in B-CH and B-LC samples. 
Additionally, Let-7c expression was negatively associated 
with lin28B expression and MYC expression and nega-
tively correlated with the proliferation of hepatocytes. 
Overall, a gradual decrease in Let-7c expression occurred 
with liver cirrhosis development, and Let-7c expression 
was the lowest in the B-HCC samples. By analysing the 
clinical data of HBV patients, we found that Let-7c was 
related to HBV DNA level, which is related to disease 
severity. To our surprise, mild elevation of Let-7c was 
positively correlated with T-Bil. These results show that 
Let-7c may be used as a serum biomarker of HBV-asso-
ciated progression, and the importance of Let-7c in HBV-
related liver cancer was clarified.

Our results indicate that lin28B has a close connec-
tion with Let-7c. High expression of lin28B was associ-
ated with a low level of Let-7c. A high level of Let-7c was 
associated with low expression of lin28B. We concluded 
that a double-negative feedback loop between lin28B and 

Let-7 could explain this result [11]. Two Cys-Cys-His-
Cys type zinc finger domains at the C-terminus and the 
cold-shock domain at the N-terminus comprise the RNA 
binding domains of lin28B [27]. Although the correla-
tion between Let-7c and Lin28B expression was not ana-
lyzed in more other hepatocellular carcinoma cells in this 
study, there have been relevant literatures to clarify their 
regulatory mechanism. Lin28B can prevent precursors of 
Let-7 from becoming mature Let-7 by binding to Let-7 
precursors via the RNA binding domains [11]. David 
H. also pointed out that lin28B can block the biological 
function of Let-7 through terminal uridylic transferase 4 
(TUT4). This causes uridylation of the 3’-terminal of the 
Let-7 precursors and the subsequent degradation of the 
Dis312 exonuclease [28], which leads to the downregula-
tion of Let-7. On the other hand, by interacting with the 
complementary site of lin28B, Let-7 can also inhibit the 
expression and function of lin28B [29]. This double neg-
ative-feedback loop affects tumorigenesis and the migra-
tion, metastasis, and treatment sensitivity of cancer cells. 
Blair B. Madison’s research discovered how lin28B could 
stimulate growth and tumorigenesis of the intestinal epi-
thelium through Let-7c. The hypertrophy and Paneth cell 
depletion caused by lin28B can be reversed through the 
expression of Let-7c [30].

Fig. 5  Expression of the Let-7 family. The expression of Let-7 family miRNAs was measured in hepatocytes. The HepG2.2.15 group was infected with 
HBV. * Means P < 0.05
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Reports suggest a close relationship of the Let-7 fam-
ily with MYC. In our study, we also found that when Let-
7c was inhibited, the expression of MYC was promoted, 
indicating that Let-7a, Let-7c, and Let-7  g could inter-
act with the 3’-UTR of MYC, resulting in the inhibition 
of the expression of MYC [8]. Moreover, another study 
used a reporter assay to show that the luciferase activity 

in the wild-type group was significantly decreased by Let-
7b mimic transfection. However, the Let-7 binding site-
mutant MYC 3’UTR reporters did not show this pattern. 
This study suggests that the sequence-specific suppres-
sion of MYC by Let-7b is dependent on the binding of 
Let-7b to the 3’UTR of MYC [31]. The research of Valerie 
B. Sampson revealed that the overexpression of Let-7a 
downregulated the level of Myc RNA and protein. Fur-
thermore, downregulation of Myc expression led to ele-
vation of Let-7a [7].

Fig. 6  Cell proliferation and MYC expression were increased after 
Let-7c was inhibited. a The expression of Let-7c was obviously 
inhibited by the Let-7c inhibitor. b Cell proliferation was promoted 
after Let-7c was inhibited. The HepG2 cell line was used, and cell 
proliferation was detected by CCK-8 assay. c Expression of MYC 
was examined by Western blotting. All the experiments were 
independently repeated three times

Fig. 7  Lin28B expression and Let-7c expression in B-HCC and B-LC/
CH serum samples. a lin28B expression in B-HCC and B-LC samples. 
b Let-7c expression in B-HCC and B-LC/CH serum samples. c Let-7c 
expression in the HepG2 group and HepG2.2.15 group. The last group 
was infected by HBV. All the data were measured by real-time PCR, 
and experiments were independently repeated three times
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The deregulation of MYC is related to many kinds of 
cancers, such as lung carcinoma, glioma, colon adeno-
carcinoma, and breast adenocarcinoma. Wang’s research 
highlights how depletion of MYC can inhibit the prolifer-
ation of normal human and cancer cells caused by MYC. 
This inhibition occurs at different phases in different can-
cer cell lines [32]. Overexpression of MYC can activate an 
impaired DNA damage response, which leads to genomic 
instability and tumor progression [33]. Moreover, MYC 
acts as an oncoprotein. However, it is difficult to target 
MYC [34] because not does not have enzymatic activity, 
making cofactors and downstream factors important for 
treatment. Den verified the upregulation of Aurora kinase 
A transcripts by MYC. Moreover, blocking the activity of 
Aurora kinases A leads to transient mitotic arrest, which 
makes it a therapeutic target to treat tumors [35].

The progression from B-LC to B-HCC has been rec-
ognized. Our results showed that Let-7c is negatively 
related to liver cirrhosis and HBV DNA level. Research 
has pointed out that a decrease in HBV DNA level is 
important for the development of B-HCC in liver cirrho-
sis patients [36]. HBV DNA copies > 4 log (10) indicates 
a higher risk of liver cirrhosis [37]. Therefore, Let-7c 
may be an essential factor for the process. However, the 
mechanism connecting Let-7c with the HBV DNA level 
requires further research.

To our surprise, Let-7c had a positive relationship with 
T-Bil in B-HCC. A study showed a negative correlation 
between a high level of serum T-Bil and cancer devel-
opment [38]. In a European study and a Korean study, 
serum T-Bil was also negatively related to lung cancer 
risk [39, 40]. Another article pointed out that a mildly 

increased concentration of T-Bil may be related to pro-
tective effects in people with cancer [41]. Generally, the 
level of HBV DNA is positively related to the level of 
T-Bil to a large extent. In this study, there were nega-
tive correlation between Let-7c and HBV associated dis-
eases progression/HBV DNA, but the Let-7c expression 
was somewhat unreasonably positively related to T-Bil. 
Therefore, we examined the data and patients’ clini-
cal characteristics in this study, and found that the level 
of T-Bil were normal in most of the patients (96.30%, 
N = 104), while only in 4 patients T-Bil levels exceeded 
the clinical normal range (3.70%, N = 4). Although there 
was no significant difference in HBV DNA levels between 
normal T-Bil group and high T-Bil group (Additional 
file 2: Fig. S2). But interestingly, in high T-Bil patients, the 
level of HBV DNA is strongly positively related to T-Bil 
levels in our cohorts; while there are no relationship or 
has a little bit negative association between HBV DNA 
and T-Bil in normal T-Bil patients. We considered the 
reason may be that the percentage of the dual-positivity 
for both HBeAg and anti-HBe patients (12%) is higher 
than common (0.2–5.9%) [42, 43], particularly in B-LC 
group (20%). So, our results may only mirror the correla-
tion between normal range T-Bil and Let-7c expression. 
More evidence and further study were needed to explicit 
the correlation.

Conclusion
In summary, Let-7c may participate in HBV-associated 
carcinogenesis through the lin28B/Let-7c/MYC axis. 
However, further investigations and studies of these top-
ics are needed.

Fig. 8  Relationships between the expression of Let-7c, HBV DNA level and T-Bil in serum samples. a The expression of Let-7c was negatively 
correlated with HBV DNA level. b The expression of Let-7c was positively correlated with T-Bil in serum samples
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