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Abstract 

This article provides an overview of diffusion kurtosis (DKI) imaging in abdominal oncology. DKI allows for more 
data on tissue structures than the conventional diffusion model (DWI). However, DKI requires high quality images at 
b-values greater than 1000 s/mm2 and high signal-to-noise ratio (SNR) that traditionally MRI systems are not able to 
acquire and therefore there are generally amplified anatomical distortions on the images due to less homogeneity of 
the field. Advances in both hardware and software on modern MRI scanners have currently enabled ultra-high b-value 
imaging and offered the ability to apply DKI to multiple extracranial sites. Previous studies have evaluated the ability 
of DKI to characterize and discriminate tumor grade compared to conventional DWI. Additionally, in several studies 
the DKI sequences used were based on planar echo (EPI) acquisition, which is susceptible to motion, metal and air 
artefacts and prone to low SNRs and distortions, leading to low quality images for some small lesions, which may 
affect the accuracy of the results. Another problem is the optimal b-value of DKI, which remains to be explored and 
not yet standardized, as well as the manual selection of the ROI, which could affect the accuracy of some parameters.
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Introduction
Diffusion-Weighted Imaging (DWI) has been recognized 
as a significant magnetic resonance imaging (MRI) tool 
for disease assessment primarily in oncology [1–13]. The 
intensity, direction and time profile of the imaging gra-
dient affect the diffusion sensitivity of water molecules 
and in DWI are included in a single simplified param-
eter called b-value (unit: s/mm2) [14–18]. The images 
acquired with different b-values were processed to obtain 
a parametric map that allows the quantification of the 
of the apparent diffusion coefficient that is linked to the 
microscopic mobility of water. In clinical setting, DWI 

is performed using b-values up to 800–1000 s/mm2, and 
the map quantification is performed using a monoexpo-
nential model considering that the diffusion water mobil-
ity follows a normal Gaussian model and then that the 
diffusion behaviour results in linear decay of the natural 
logarithm of the DWI signal intensity (SI) as the b-value 
increases and the slope represents the apparent diffu-
sion coefficient (ADC) [19–24]. However, it is known 
that the water molecules diffusion within tissue fol-
lows a non-Gaussian model and for this reason in 2005 
Jensen et  al. [25] described a non-Gaussian approach, 
named Diffusion Kurtosis imaging (DKI) to assess tis-
sue water diffusion coefficients. By means of the DKI 
is possible to calculate the kurtosis median coefficient 
(MK), which assesses the variation of diffusion behaviour 
by a Gaussian, to a non-Gaussian model, and the diffu-
sion coefficient (MD), which assesses the correction of 
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the non-Gaussian bias [25–27]. The term dimension-
less kurtosis describes the degree of deviation from the 
Gaussian distribution of the spin displacements along the 
observation axis and therefore, when the average over all 
directions is calculated, the mean kurtosis is obtained. 
The MD value provides novel diffusion properties that 
describe the tissue microstructure.

DKI allows for more data on tissue structures than 
the conventional diffusion model (DWI). However, DKI 
requires high quality images at b-values greater than 
1000  s/mm2 and high signal-to-noise ratio (SNR) that 
traditionally MRI systems are not able to acquire and 
therefore there are generally amplified anatomical distor-
tions on the images due to less homogeneity of the field. 
Advances in both hardware and software on modern 
MRI scanners have currently enabled ultra-high b-value 
imaging and offered the ability to apply DKI to multiple 
extracranial sites [28–44].

Hence, radiologists could benefit through a better 
understanding of the major concepts of DKI.

In this paper, we evaluate the basic principles of DKI 
and clinical applications in oncological setting within the 
recent peer-reviewed literature.

Diffusion analysis: basic principles
DKI analyses non-Gaussian water diffusivity using a pol-
ynomial approach according to the following equation:

In this, there are two variables, Dapp and Kapp, while 
 S0 is the basal signal with b value = 0.

Kapp is the apparent diffusional kurtosis, which reflects 
the higher distribution of the high tissue diffusivities 
that occurs in the setting of the non-Gaussian diffusion 
behaviour. Kapp is determined by the curvature of the SI 
decay away from the plot that would be predicted by a 
monoexponential model. The Dapp is the diffusion coef-
ficient corrected to take into account the observed non-
Gaussian behaviour and is determined by the slope of the 
SI decay diagram.

The DKI approach offers radiologists the possibility of 
obtaining information on the anisotropic characteristics 
of tissues not obtainable with conventional DWI [27].

Tissue ADC at b-values below 1000  s/mm2 has been 
recognized as an assessment primarily of the extracel-
lular space [27]. Cell arrangement, cell size distribution, 
cell density, extracellular space viscosity, glandular struc-
tures, and membrane integrity are all variables that can 
affect the diffusion of water into the extracellular space. 
Hence, lower ADC values have often been attributed to 
higher cell density. In contrast, Kapp has been sized to 
exemplify the direct relationships of water molecules to 

Si = S0 ∗ e
(

−bi ∗ Dapp + 1/6+ b2i ∗ D
2
app ∗ Kapp

)

cell membranes and intracellular complexes, although it 
is also influenced by other hard-to-separate extracellular 
parameters [27]. In fact, at the nanoscopic level, water is 
an inhomogeneous substance due to the polar nature of 
its molecule. Furthermore, water molecules could form 
3D arrays in the presence of interfaces with charged 
materials such as polarized cell membranes or organelles 
or protein molecules, resulting in organization in layers 
with reduced diffusivity [27]. In this scenario, DKI val-
ues have a higher specificity to reveal water interactions 
within cell and tissue components [27].

Acquisition consideration
DKI is acquired using a standard DWI sequence also 
using ultra high b-values. Conventional DWI should 
require acquiring only two b-values for ADC evaluation 
while DKI should require at least three different b-values 
since there is an additional variable (Kapp) within the 
mathematical model. The possibility of acquiring more 
than three b-values and at least two b-values above and 
below 1000 s/mm2 should be considered to help capture 
non-Gaussian behaviour [27].

To obtain accurate DKI values, it is critical that high 
b-values have adequate SNR. However, this, at higher 
b-values, is remarkably challenging in body imag-
ing, given the faster signal decays and the penchant for 
employing faster sequences. Therefore, it may be neces-
sary to reduce the spatial resolution or increase the num-
ber of signal averages to maintain SNR [27].

Today, MR systems do not habitually offer in-line DKI 
post-processing options. Therefore, separate post-pro-
cessing software are needed. At least, DKI assessment 
should offer two maps (Dapp and Kapp). Dapp map is 
similar to ADC map. Reductions in Dapp are usually cor-
related with increases in Kapp, both indicating abnormal 
diffusion behaviour in similar anatomic sites. However, 
a visual analysis of the two maps could be diagnostically 
not sufficient. Instead, quantitative evaluation is sug-
gested to fully harness the complementary role of kurto-
sis in distinguishing tissue pathology [27].

Clinical studies
In oncological setting, the interpretation of images com-
prises different phases of patient management (diagnosis, 
staging, and assessment of treatment response) [45–54]. 
The spread in expertise in cancer and the opportunity 
to obtain a tailored treatment by choosing a proper 
approach, as well as the management of patients within 
a multidisciplinary team has increased the patient prog-
nosis [55–69]. In this scenario, the possibility to use a 
diagnostic tool that evaluates cancer characteristics at 
microscopic level explains the reasons for the great atten-
tion on DWI [70–76].
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By quantifying the non-Gaussianity of the diffusion dis-
tribution in DWI, Kapp is a comparatively direct measure 
of the heterogeneity of the tissue microstructure. Recent 
studies have reported that DKI can reflect microstruc-
tural conditions more accurately than conventional DWI 
[77, 78]. These promising results ignite an interest in DKI 
that may allow for more comprehensive tissue characteri-
zation than conventional DWI.

Liver
Several researches have assessed the role of DKI in liver 
diseases, with particular regard in fibrosis and hepatocel-
lular carcinoma (HCC), comprising different phases of 
patient management (Fig. 1).

Generally, hepatic fibrosis is represented as a reac-
tion to a disorder associated with hepatocellular degen-
eration [79–84]. The amount of fibrous connective tissue 
increases due to the progression of inflammatory diseases 
with cellular degeneration or necrosis. During the pro-
cess of fibrosis, molecules of collagen, glycosaminogly-
cans and proteoglycans are deposited in the extracellular 
space of the liver. Consequently, hepatic fibrosis accom-
panied by swelling of the hepatocytes and infiltration 
of inflammatory cells narrows the extracellular space, 
increasing the average value of kurtosis. Yoshimaru et al. 
[79] evaluated the relationship between DKI and liver 
function by comparing the mean value of kurtosis with 
the Child–Pugh score, the ALBI score and the ICG-R15 
value, which are typical indicators of liver function [80] 
and demonstrating that liver function can be quantita-
tively assessed using the mean kurtosis value. Indeed, 

the fibrotic process could explain the positive correlation 
between the mean value of kurtosis and the Child–Pugh 
score or the ALBI score. However, there was little corre-
lation between the mean value of kurtosis and the Child–
Pugh score or the ALBI score presumably because the 
pattern of variation of the DKI and Child–Pugh scores or 
the ALBI scores differ according to the state of the hepat-
ocyte tissue and liver function, respectively.

Recently, several studies have evaluated the role of 
DKI in HCC for the characterization and evaluation of 
the response to treatment [1, 83, 85–90]. However, the 
consistency and repeatability of the adapted parameters 
have not been assessed. It is known that more complex 
models with multiple parameters tend to oversize the 
data, resulting in poor repeatability and limited use in 
clinical practice. Furthermore, in order to capture the 
non-Gaussian diffusion behaviour of water molecules in 
biological tissues, maximum b-values of about 2000  s/
mm2 have been proposed for the liver. A higher b-value 
means a lower SNR and less repeatability of the calcu-
lated parameters. Therefore, it is necessary to explore 
whether or not non-mono-exponential models may pro-
vide desirable repeatability of measurements for HCC. 
Rosenkrantz et  al. [77] performed the DKI assessment 
in HCC using fresh liver explants. Twelve liver explants 
underwent MR study using a sequence with a maximum 
b value of 2000 s/mm2. A conventional mono-exponential 
model was used to calculate the ADC and a non-Gauss-
ian model to evaluate Kapp and Dapp. They showed 
that 16 HCC had intermediate to substantial excess dif-
fusional kurtosis and Dapp was 23% greater than ADC 

Fig. 1 Woman 73 year with HCC on II hepatic segment. In A the mean coefficient of apparent kurtosis (MK) which showed the lesion with 
restricted diffusion and therefore hypointense, in B the mean diffusion coefficient (MD) which instead appeared hyperintense
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medium. ADC, Dapp, and Kapp had significant differ-
ences between responding and non- or partially respond-
ing lesions. Among the unresponsive nodules, cellularity 
showed a strong inverse association with ADC, a weaker 
inverse association with Dapp, and a direct association 
with Kapp [77].

With regard to prognosis, the pathological grade 
of HCC and microvascular invasion (MVI) are main 
involved features, since they are independent predic-
tive features for recurrence and long-term survival after 
resection [91–94]. Cao et  al. explored the performance 
of DKI in predicting the presence of microvascular inva-
sion (MVI) and the histological grade of HCC and com-
pared it to the conventional ADC value. The results of 
their study suggested that of all the diffusion parameters 
studied, MK might be the most promising factor in the 
systematic assessment of tumour biological behaviours 
and serve as an independent risk factor for early relapse 
after liver resection within one year [95]. Wang et al. [96] 
that showed the correlation between MK and histological 
grade of HCC have confirmed these results.

Few studies have evaluated DKI and liver metastases. 
Granata et  al. assessed the role of DKI in patients with 
colorectal liver metastases to detect RAS mutation [97]. 
They showed a significant association between the group 
with RAS mutation and the group without RAS muta-
tion with MK [MK standard deviation (STD)], MD, and 
the perfusion fraction (FP). The best results were reached 
by MK STD with an area under curve (AUC) of 0.80, an 
accuracy of 79% using a cut-off of 203.90 ×  10−3 [97].

Ablative treatment is a minimally invasive approach 
that is usually used in the treatment of tumours [98–101]. 
Ablation treatment is believed as a potential first-line tool 
in small HCCs (< 3 cm) [101]. The goal of ablative treat-
ment is necrosis. Therefore, tumour volume decrease 
may be absent with these treatments. Tumour features 
such as angiogenesis and hypoxia are more pertinent to 
assessing response, so as it is necessary to develop new 
functional biomarkers. Goshima et al. [87] assessed DKI 
and conventional DWI for evaluating treatment response 
in hypervascular HCC. Sixty-two patients (112 HCCs; 
viable, n = 63; non-viable, n = 49); underwent MRI; DKI 
was performed with different b values: 0, 100, 500, 1000, 
1500, and 2000s/mm2. The MK and ADC values of the 
hepatic parenchyma and of the HCCs were assessed. The 
detectability of viable HCC based on MK and ADC was 
analysed. They also evaluated the correlation between 
Child–Pugh classes and MK or ADC values. The MK 
value was significantly higher for the viable lesions than 
for the non-viable lesions, while ADC values were signifi-
cantly lower between the viable lesions and non-viable 
lesions. Considering that viable HCCs are characterized 
by structural complexity, with higher cellularity with 

nuclear atypia, more vascular hyperplasia or necrosis, 
and occasionally fatty deposition, it is known that DKI 
model represents better the complexity of biological tis-
sues. However, it is essential that DKI might be evaluated 
in a reproducible manner and therefore is mandatory to 
standardize the protocol, establishing the strength and 
number of “b” values, the model to evaluate quantitative 
parameters [87].

Pancreas
Diagnosis of pancreatic cancer remains challenging, 
due to overlapping imaging features with benign lesions 
(Fig.  2). However, an accurate detection and characteri-
zation of lesions is required since the prognosis is con-
nected to tumor type and grade, so as it is required a 
correct staging. Thus, an imaging tool that provides 
higher tumor conspicuity would be needed to enhance 
staging and clinical outcomes [102–105]. Granata et  al. 
[106] assessed functional MRI features to differentiate 
pancreatic tumours, perilesional inflammatory tissue, 
and normal parenchyma. They used dynamic contrast-
enhanced MRI (DCE-MRI), DKI, intravoxel incoherent 
motion (IVIM), and conventional DWI-derived param-
eters showing that MD by DKI, could be helpful for the 
differentiation of lesion to normal parenchyma and per-
ilesional inflammation.

Shi et al. [107] assessed MRI performance in differenti-
ating pancreatic ductal adenocarcinomas (PDACs), from 
solid pseudo papillary neoplasms (SPNs) and pancreatic 
neuroendocrine tumors (PNETs) using DKI. Consider-
ing that therapeutic strategies differ significantly between 
PDACs, and SPNs and PNETs, since for PDACs, aggres-
sive surgical approaches such as the Whipple technique 
with extensive lymph node dissections is usually used, 
which entails higher post-surgical complications, it is 
crucial a pre-surgical staging in order to plan the more 
appropriate technique. The researches [107] showed that 
the accuracy rate with DKI for differentiating PDAC from 
SPNs and PNETs was higher than that of subjective diag-
nosis alone (P < 0.05) so that DKI could assist radiologists 
in accurately diagnosis.

Electrochemotherapy (ECT) is an interesting approach 
for treatment of several tumours [108–112]. This tech-
nique links the administration of drugs with electric 
pulses for cell membrane electroporation and it is efficacy 
and safety in the treatment of PDCA [113]. However, 
the correct assessment of this treatment is a challenge 
for radiologists since tumour necrosis is not associated 
with a dimensional change. In this scenario, the response 
evaluation criteria in solid tumour (RECIST) are not 
adequate. Granata et al. assessed Conventional DWI and 
DKI as tools to evaluate treatment efficacy. They showed 
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that MD improved the diagnostic performance respect to 
ADC in the response assessment [114].

Rectal cancer
Although rectal cancer is one of the most common 
tumour worldwide and, though in order to identify the 
lesion as soon as possible, there were a widespread use of 
screening, however, to day, this cancer is still diagnosed 
in an advanced stage of the disease [115–118]. Nowadays, 
the standard of care in patients with locally advanced 
rectal cancer (LARC) is still preoperative chemoradio-
therapy (pCRT) followed by total mesorectal excision 
[119–122], though in-patient with a complete response 
to treatment, it is possible to consider a “wait-and-watch” 
strategy.

Conventional o morphological (m)-MRI, based on 
T2-W sequences, is at present believed the main imaging 
toll for staging. However, conventional sequences have 
some weaknesses, particularly after pCRT. To surmount 
this limit, functional data have been evaluated [123–132] 
(Fig. 3).

The managing of rectal cancer patient is largely 
founded on the recurrence risk stratification. Prognostic 
signs involve TNM stage, histological grade, peritumonic 
lymphangiovascular invasion (LVI) or neural invasion, 
circumferential margin (CRM) involvement [128]. Zhu 
et  al. [133] evaluated DKI (b-value > 2100  s/mm2) and 
conventional DWI (b-value > 1000  s/mm2) in 56 rectal 
cancers, evaluating the relationship between kurtosis, 
diffusivity, ADC with pT and pN stages and histological 
degrees. Kurtosis was significantly higher in tumors with 
nodal involvement than in those without nodal involve-
ment. Furthermore, kurtosis was significantly higher in 
high-grade than low-grade tumors, while no significant 
differences in diffusivity or ADC were found between 
low- and high-grade tumors. Cui et a [134] evaluated the 
associations between conventional DWI (highest b-value 
1000 s/mm2) and DKI (highest b-value 2100s/mm2) and 
plasma carcinoembryonic antigen level, pT stage, pN 
stage, grade tumor, peritumor LVI or neural invasion and 
CRM invasion in 79 patients with LARC, demonstrat-
ing that kurtosis was greater in patients with lymph node 

Fig. 2 Adenocarcinoma of the pancreatic head. MK map before and after treatment (A, C); MD map before and after treatment (B, D). In MK map 
can be observed a reduction of signal intensity while in MD map can be observed an increase of intensity. In both cases the variation of intensity 
was linked to a good response after the treatment



Page 6 of 15Granata et al. Infectious Agents and Cancer           (2022) 17:25 

and CRM involvement, low grade lesion and presence of 
LVI. ADC and diffusivity were significantly correlated at 
stages T and N. Yu et  al. [135] evaluated DKI values in 
lymph node involvement (85 patients with 273 lymph 
nodes). Dapp, Kapp, and ADC of the lymph nodes were 
evaluated. Median Dapp and ADC values of malignant 
lymph nodes were significantly higher than in benign 
lymph nodes, while median Kapp of malignant lymph 
nodes was statistically lower than in normal lymph nodes 
[135].

Yu et  al. [136] assessed the correlation between DWI 
and DKI and distant metastases showing that the Dapp 
was significantly lower in patients with metastases [136].

Regarding the response to treatment in LARC, Yu 
et al. [137] evaluated DKI as a biomarker to predict the 
response in LARC. Researchers demonstrated that per-
centage change in Dapp has higher diagnostic perfor-
mance for assessing response to treatment. Hu et al. [138] 
evaluated DKI parameters as biomarkers of complete 
response relative to ADC, demonstrating that MKpre and 
MKpost values were much lower for responder patients 
than for non-responders, while ADCpost and rate of 
change ADCs were significantly higher for responder 
patients. Fusco et al. [123] evaluated the tumor response 
to short-term radiotherapy using the standardized index 
of shape (SIS) by contrast magnetic resonance imaging, 

Fig. 3 DKI-derived parameters maps pre (A, C) and post-treatment (B, D) for a responder patients (TRG 2): MK A and B, MD C, D. In MK map can 
be observed a reduction of signal intensity while in MD map can be observed an increase of intensity. In both cases the variation of intensity was 
linked to a good response after the treatment
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ADC, IVIM and DKI parameters. Promising results were 
obtained using a decision tree tested with all ADC, IVIM 
and DKI parameters.

DKI is a promising approach in evaluating LARC 
patients; however, the DKI must be a reproducible 
model. Therefore, to obtain quantitative parameters it 
is necessary to standardize the sequence and the model 
[139, 140].

Renal tumours
Renal cell carcinoma (RCC) is the most frequent malig-
nant renal tumour in adults and surgical resection is 
the main valuable approach; other options, comprising 
RFA, cytoablation and even active surveillance have been 
employed [141–151]. In patients unfit for surgery, sys-
temic therapy including targeted agents, immunotherapy 
and chemotherapy were employed to improve the overall 
survival (OS) [141–151]. In this context, lesion detection 
and identification of histologic grades has clinical signifi-
cance in establishing prognosis.

Ding et  al. [152] showed that DKI was a feasible tool 
in characterization of malignant lesions, with the MD 
higher, while MK lower than those of benign lesions 
[152]. In addition, Fu et  al. [153] assessed the DKI in 
RCC, considering 66 patients, 13 with renal angiomy-
olipoma with minimal fat (RAMF) and 7 patients with 
renal oncocytoma (RO). MD, fractional Anisotropy (FA), 
MK, kurtosis anisotropy (KA) and radial kurtosis (RK) 
were calculated. For MD, a significant higher value was 
shown in RCC than the rest renal tumors. The MD val-
ues were higher for RO than for AML, while compara-
ble MD values were found between RCC and RO. For 
MK, KA and RK, a significant higher value was dem-
onstrated in AML than RCC and RO. The MK, KA and 
RK values were higher for RO than for RCC [153]. Zhu 
et  al. [154] assessed the feasibility and reproducibil-
ity of diffusion kurtosis tensor imaging (DKTI) in RCC 
in distinguishing the subtypes of RCC and the grades 
of clear cell RCC (CCRCC). They found significant dif-
ferences between the DKTI metrics of RCCs and con-
tralateral renal parenchyma among the subtypes of RCC. 
MK and Ka values of CRCC were significantly higher 
than those of CCRCC and contralateral normal paren-
chyma (PRCC). Statistical difference of the MK, KA, RK 
and MD values were also obtained between CCRCC with 
high- and low-grades. MK values were more effective for 
distinguishing between low- and high- grade. These data 
were similar to ones of Cao et al. [155] that analysed 89 
patients with histologically proven ccRCC, showing that 
compared to normal renal parenchyma, ADC and MD 
values of ccRCC decreased and MK, Ka, and Kr values 
increased. ADC and MD values of ccRCC decreased with 
the increase in pathological grade, while MK, Ka, and Kr 

values were increased. ADC could discriminate the grad-
ing except for G1 versus G2 while Ka and Kr the grading 
except for G2 versus G3 and MD and MK could discrimi-
nate G1 versus G2, G1 versus G3, G1 versus G4, G2 ver-
sus G3, G2 versus G4, and G3 versus G4. The AUC of MK 
was the highest [155].

Although several researches have demonstrated the 
potential role of DKI in the assessment of sevral prog-
nostic features and, so to guide a precise treatment, how-
ever the potential advantage of using DKI in the kidneys 
remains to be fully explored.

Prostate cancer
In the last decade, there has been growing attention on 
MRI of the prostate as new imaging toll, that thanks to 
the association of DWI and DCE with conventional T1- 
and T2-W imaging, now it is possible to obtain a mul-
tiparametric MRI (mpMRI) protocols [28, 30, 156–163].

Several researches have assessed DKI and DWI in the 
assessment of tumour aggressiveness (Fig.  4). However, 
the results have been contradictory: several studies dem-
onstrated a better performance of DKI [164, 165], others 
did not prove these data [166–168]. Rosenkrantz et  al. 
[164] showed that K values were significantly higher in 
both tumor than normal parenchyma and tumor with 
higher rather than lower Gleason scores. Furthermore, 
DKI showed significantly greater sensitivity than ADC 
to differentiate cancerous areas from benign areas in the 
peripheral zone (PZ). Roethke et  al. [167], evaluating 
55 patients with prostate cancer, did not confirm these 
results, showing that although K was significantly higher 
in areas with cancer, the ROC analysis did not show a sig-
nificant difference between DKI and ADC to detect the 
cancer. As for the aggression, Kapp and ADC showed a 
comparable result.

A recent study comparing ADC and DKI in detection 
and characterization, evaluating 255 patients with PC 
[169]. The authors showed that ADC and DKI had a simi-
lar diagnostic performance, so that they concluded that 
there was not a clear benefit of DKI.

Therefore, the value of additional DKI remains unclear. 
Anyway, the present data propose that DKI could offer 
different but complementary information on tumour 
microenvironment.

Other fields
Few studies have evaluated the role of DKI in cervical or 
endometrial cancer [170–172].

Cervical cancer (UCC) was the fourth most commonly 
diagnosed malignancy and the fourth leading cause of 
cancer death among women worldwide [13, 173–178]. 
Cervical squamous carcinoma (CSC) is the most com-
mon pathological type of UCC, accounting for 75–80% of 
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the total number of cervical cancer patients [170]. Poorly 
differentiated CSCs can easily cause local invasion and 
distant metastasis, influencing the choice of treatment 
and patient prognosis. Therefore, it is important to accu-
rately assess the degree of CSC before treatment. Hou 
et  al. compared the weighted imaging value for amide 
proton transfer (APTWI) and DKI in evaluating the his-
tological grade of cervical squamous carcinoma (CSC) 
in addition to DWI [170]. They showed that the APTWI 
(MTRasym) parameters and MK values of G1 were sig-
nificantly lower than those of G2 and those parameters 
of G2 were significantly lower than those of G3. The MD 
and ADC values of G1 were significantly higher than 
those of G2 and those of G2 were significantly higher 
than those of G3. MTRasym and MK were both posi-
tively correlated with histological grade, while MD and 
ADC were both negatively correlated with histological 
grade.

Endometrial cancer (EC) is the most common gyneco-
logical malignancy in the world. Prognosis depends on 
several factors, including histological grade and subtype, 
International Federation of Gynecology and Obstetrics 
(FIGO) stage, lymphovascular invasion, and lymph node 
metastases. The histological grade of endometrial can-
cer alone is a strong predictor of lymph node metastasis 
[130, 178–182]. Although several studies have explored 
the value of whole tumor histogram analysis of ADC for 
preoperative tumor classification of endometrial cancer, 
few studies have evaluated the value of DKI. Chen et al. 
[171] evaluated 73 patients with CE and compared Dapp, 
Kapp and ADC parameters between high-grade (grade 
3) and low-grade (grade 1 and 2) tumors, demonstrating 
that the 10th percentile AUC Dapp, Kapp’s 90th percen-
tile, and ADC The 10th percentile was superior to other 
parameters in distinguishing high-grade from low-grade 
cancers. The combination of the 10th percentile of Dapp 

and the 90th percentile of Kapp improved the AUC to 
0.901, which was significantly higher than that of the 
10th percentile of the ADC.

Yue et al. [172] compared the performance of DKI and 
DWI for diagnosis and histological classification of EC. 
They evaluated 61 EC patients and 30 patients with nor-
mal endometrium; showed that MK values for groups 
G0, G1, G2 and G3 gradually increased, while MD and 
ADC values gradually decreased. MK values had the 
highest diagnostic accuracy in differentiating G0 and 
(G1 + G2 + G3), G0 and G1, G1 and G2 and G2 and G3. 
MK was maximally correlated with histological grade, 
followed by MD and ADC [172].

Discussion and conclusion
DKI provides more data on tissue structures than the 
conventional monoexponential model for b-values below 
1000 s/mm2. Advances in hardware and software within 
modern MRI scanners now allow for ultra-high b-value 
imaging, hence the ability to apply DKI to multiple 
extracranial sites. Therefore, body radiologists could ben-
efit from a better understanding of the main concepts of 
DKI.

Several studies have evaluated the ability of DKI in 
tumor characterization and tumor grade assessment. 
DKI parameters could help distinguish benign from 
malignant tissues, as several research suggests that DKI 
parameters outperform ADC to distinguish low- and 
high-grade lesions. However, these researches observe an 
inverse association between Kapp and ADC, raising the 
question of whether there is an additional advantage of 
DKI, given the increased technical complexity.

Additionally, in several studies the DKI sequences 
used were based on planar echo (EPI) acquisition, 
which is susceptible to motion, metal and air artefacts 
and prone to low SNRs and distortions, leading to low 

Fig. 4 Diffusion Weigthed Images at b value B0 (A), B1000 (B), B2000 (C) and ADC map (D) in a prostate cancer tumor with Gleason score 7. The 
ADC map showed a marked narrowing of the diffusion of water molecules with a clear reduction of the signal intensity
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quality images for some small lesions, which may affect 
the accuracy of the results. Another problem is the 
optimal b-value of DKI, which remains to be explored 
since a publicly recognized standard has not yet been 
introduced, as well as the manually selected region 
of interest, which could affect the accuracy of some 
parameters.

In conclusion, DKI is still largely a research tool and 
few data support its routine use compared to conven-
tional DWI in oncology. However, the technique is at 
a stage where it can be explored in broader clinical 
settings.
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