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Abstract

Background: Radiomics is an emerging field and has a keen interest, especially in the oncology field. The process
of a radiomics study consists of lesion segmentation, feature extraction, consistency analysis of features, feature
selection, and model building. Manual segmentation is one of the most critical parts of radiomics. It can be time-
consuming and suffers from variability in tumor delineation, which leads to the reproducibility problem of
calculating parameters and assessing spatial tumor heterogeneity, particularly in large or multiple tumors. Radiomic
features provides data on tumor phenotype as well as cancer microenvironment. Radiomics derived parameters,
when associated with other pertinent data and correlated with outcomes data, can produce accurate robust
evidence based clinical decision support systems. The principal challenge is the optimal collection and integration
of diverse multimodal data sources in a quantitative manner that delivers unambiguous clinical predictions that
accurately and robustly enable outcome prediction as a function of the impending decisions.

Methods: The search covered the years from January 2010 to January 2021. The inclusion criterion was: clinical
study evaluating radiomics of liver colorectal metastases. Exclusion criteria were studies with no sufficient reported
data, case report, review or editorial letter.

Results: We recognized 38 studies that assessed radiomics in mCRC from January 2010 to January 2021. Twenty were
on different tpics, 5 corresponded to most criteria; 3 are review, or letter to editors; so 10 articles were included.

Conclusions: In colorectal liver metastases radiomics should be a valid tool for the characterization of lesions, in the
stratification of patients based on the risk of relapse after surgical treatment and in the prediction of response to
chemotherapy treatment.
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Introduction
Radiomics is an emerging field and has a keen interest,
especially in the oncology field [1–4]. It has been shown
that radiomics could be predictive of TNM grade,
histological grade, response to therapy, and survival in
various tumors [5–8]. The process of a radiomics study
consists of lesion segmentation, feature extraction,
consistency analysis of features, feature selection, and
model building.
Manual segmentation is one of the most critical parts

of radiomics. It can be time-consuming and suffers from
variability in tumor delineation, which leads to the
reproducibility problem of calculating parameters and
assessing spatial tumor heterogeneity, particularly in
large or multiple tumors [9, 10].
Radiomic features provides data on tumor phenotype

as well as cancer microenvironment. Radiomics derived
parameters, when associated with other pertinent data
and correlated with outcomes data, can produce accur-
ate robust evidence-based clinical-decision support sys-
tems (CDSS) [11]. The potential of radiomics to improve
CDSS is beyond doubt and the field is evolving rapidly.
The principal challenge is the optimal collection and
integration of diverse multimodal data sources in a
quantitative manner that delivers unambiguous clinical
predictions that accurately and robustly enable outcome
prediction as a function of the impending decisions [12].
The central hypothesis of radiomics is that the quantita-
tive individual voxel-based variables are more sensitively
associated with various clinical end points compared
with the more qualitative radiologic, histo-pathologic,
and clinical data more commonly used today [13].
Radiomic variables offer notable advantages over qualita-
tive imaging assessment, since this is clearly limited by
the resolution of observers’ eyes. An extension of radio-
mic information can be accomplished by adding these
data to existing prognostic tools, such as genomics. Gen-
omics is an emerging prognostic tool; in fact, genomic
markers, along with expression of various microRNA
signatures, have been shown to correlate with treatment
response, metastatic spread, and prognosis [14–16].
Hence, combining radiomics with genomic data, so-
called “radio-genomics,” could potentially provide the
highest level of personalized risk stratification ever de-
veloped to further advance precision medicine [13].
Radiogenomic may be able to greatly augment patient
selection for different cancer therapy, predicting re-
sponse to treatment, addressing potential resistance to
therapy (chemotherapy and/or radiation therapy), distin-
guishing favorable subsets of malignancies from those
with poor prognosis, evaluating which patients may
benefit from adjuvant therapy [13, 17].
Hard coded radiomic features were proven to be

effective to predict the chemotherapy response in liver

colorectal metastases (mCRC), which manifested their
clinical usefulness in response prediction [18–20]. How-
ever, previously used hard-coded texture features were
not specifically designed for targeted clinical issues,
which limited their predictive validity. With the develop-
ment of the deep learning (DL) technique, the neural
network is more commonly used in radiomics studies,
and has achieved expert-level performance in rectal
cancer and liver diseases [21, 22]. DL self-learning quan-
titative features may supplement unrevealed imaging fea-
tures besides conventional radiomic features to improve
the predictive power. Additionally, DL-based radiomics
avoided time-consuming [23].
This article is an update overview on the Radiomics in

liver colorectal metastases. Particularly, limitations and
future perspectives are discussed.

Methods
This overview is the result of a self-study without protocol
and registration number.

Search criterion
We assessed several electronic databases: PubMed (US
National Library of Medicine, http://www.ncbi.nlm.nih.
gov/pubmed), Scopus (Elsevier, http://www.scopus.com/),
Web of Science (Thomson Reuters , http://apps.
webofknowledge.com/), and Google Scholar (https://
scholar.goo-gle.it/). The following search criteria have
been used: “Radiomics” AND “Liver colorectal metastases”
AND “detection”; “Radiomics” AND “Liver colorectal me-
tastases” AND “diagnosis”; “Radiomics” AND “Liver colo-
rectal metastases” AND “Characterization”; “Radiomics”
AND “Liver colorectal metastases” AND “Prognosis”;
“Radiomics” AND “Liver colorectal metastases” AND
“treatment assessment”.
The search covered the years from January 2010 to

January 2021. Moreover, the references of the found
papers were evaluated for publications not indexed in
the electronic database. We analyzed all titles and ab-
stracts. The inclusion criterion was: clinical study evaluat-
ing radiomics of liver colorectal metastases. Articles
published in the English language from January 2010 to
January 2021 were included. Exclusion criteria were stud-
ies with no sufficient reported data, case report, review or
editorial letter.

Results
We recognized 38 studies that assessed Radiomics in
mCRC from January 2010 to January 2021. Twenty
papers were on different topics, 5 corresponds to most
criteria; 3 are review, or letter to editors; so 10 articles
were included in the analysis (Fig. 1).
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Discussion
Basic principles and process
Radiomics (Fig. 2) is simply the extraction of a high
number of quantitative features from medical images, in-
cluding several phases: image acquisition (e.g. RX, US,
MX, CT, MRI, and ibrid imaging as PET-CT or PET-
RM); segmentation (aumotatic, semi-automatic and
manual); generation of features; development of data-
base; analysis of database and radiomics signature [24].
Images used for radiomic analysis are collected from
different hospitals or data centers; thus, these images are
usually obtained using different parameters and proto-
cols and reconstructed with different software. The
differences may bring unexpected influences on the
radiomic model. Segmentation is critical because the
subsequent feature data are generated from the seg-
mented volumes. It is challenging because many tumors
have indistinct borders. Generation of features refers to
the extraction of semantic features such as dimension,

necrosis, margin, location or extraction of non semantic
features such as shape, hystogram or texture [25–31].
In the past years, texture analysis has gained attention

in medical applications and has been proved to be a
significant computer-aided diagnostic tool [27]. There is
not a strict definition of an image texture but it can be
described as the spatial arrangement of patterns that
provides the visual appearance of coarseness, random-
ness, smoothness, etc. Texture analysis describes a wide
range of techniques for quantification of gray-level
patterns and pixel inter-relationships within an image
providing a measure of heterogeneity. It has been shown
that different image areas exhibit different textural pat-
terns that are sometimes imperceptible to the human
eye [27]. Applications of texture analysis in medical
imaging include classification and segmentation of
tissues and lesions. Texture analysis applications involve
a process that consists of six steps: image acquisition, re-
gion of interest (ROI) definition, ROI pre-processing,

Fig. 1 Schematic representation of included and excluded articles

Fig. 2 Radiomic Workflow
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feature extraction, feature selection, and classification.
None of these steps is specific, and the methods have to
be chosen according to the application [27]. Manual
definition of ROIs is still considered the gold standard in
many applications, and it is the chosen option over
automatic methods [27]. The size of the ROI should be
sufficiently large to capture the texture information
thereby eliciting statistical significance. The effect of
ROI size becomes insignificant when large ROIs are
used. In general, texture features were highly affected at
ROI areas smaller than 80 × 80 pixels and became un-
affected at ROI areas of around 180 × 180 pixels [27]. It
was demonstrated that some features are not only
dependent on texture, but also on other ROI properties,
such as the mean intensity and variance. To avoid the
influence of such factors, ROI normalization is a recom-
mended pre-processing step [32, 33].
Feature extraction is the main and specific step in the

texture analysis process and implies the computation of
texture features from predefined ROIs (Fig. 3). Many
approaches have been proposed in order to quantify the
texture of an image allowing the computation of numer-
ous features, including 2D methods (e.g. Model-based
methods, Autoregressive models, Fractal models.) or 3D
approaches [34]. 3D approaches increase the dimension-
ality and the information captured from the image, thus
improving the discrimination power [35, 36]. Implemen-
tation of 4D texture analysis is possible by including the
temporal dimension available in some MRI datasets.
Notable results were observed for discrimination of be-
nign and malignant breast lesions and for localization

and segmentation of the heart using the 4D spatio-
temporal approach [37].
Radiomics can be performed with as few as 100 pa-

tients, although larger data sets provide more power.
Radiomics could potentially aid cancer detection, diag-
nosis, assessment of prognosis, prediction of response to
treatment, monitoring of disease status [38, 39].
Radiomic is designed to be used in decision support of

precision medicine, using standard of care images that
are routinely acquired in clinical practice, it presents a
cost-effective and highly feasible addition for clinical
decision support. Also, this analysis non-invasively
characterize the overall tumor accounting for heterogen-
eity, interrogating the entire tumor allows the expression
of microscopic genomic and proteomics patterns in
terms of macroscopic image-based features [39]. More-
over, Radiomics Analysis produces prognostic and/or
predictive biomarker value derived from routine, stand-
ard of care imaging data, allowing for a fast, low-cost,
and repeatable means for longitudinal monitoring [39].

Current applications
Radiomics approaches in diagnosis and assessment of
prognosis
Studies using radiomic analyses have shown that radio-
mic features are capable of distinguishing between be-
nign and malignant tissue and aiding in the assessment
of cancer aggressiveness in a variety of clinical settings
[40–43]. Analysis of heterogeneity in enhancement
patterns or texture analysis of DCE images has been
performed with promising findings; however, texture

Fig. 3 Feature extraction incluing size, shape, morphology features, textural metrics, perfusion parameters
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analysis is not limited to enhancement patterns.
Measures of heterogeneity in T1- W, T2W, and DW
MRI images can reveal differences in cellular density in
tumours, which in turn can be matched to histological
findings and aid in distinguishing malignant versus
benign lesions [40, 43].
Oyama et al. assessed the accuracy for classification of

hepatic tumors by characterization of T1-weighted
magnetic resonance (MR) images using two radiomics
approaches with machine learning models: texture
analysis and topological data analysis using persistent
homology. They showed that Texture features and per-
sistence images have the potential to capture such arrays
of gray scale values and might provide useful informa-
tion for the differential diagnosis of hepatic tumors [44].
Li et al. assessed the feasibility of texture analysis based
on spectral attenuated inversion-recovery (SPAIR) T2W-
MRI) for the classification of hepatic hemangioma (HH),
hepatic metastases (HM) and hepatocellular carcinoma
(HCC). The texture analyses showed that the HH versus
HM, HM versus HCC, and HH versus HCC could be
differentiated by 9, 16 and 10 feature parameters, re-
spectively. The model’s misclassification rates were 11.7,
9.6 and 9.7% respectively. No texture feature was able to
adequately distinguish among the three types of single
liver lesions at the same time [45]. Jansen et al. evaluated
the MRI data sets of 95 patients with in total 125 benign
lesions (40 adenomas, 29 cysts and 56 hemangiomas)
and 88 malignant lesions (30 hepatocellular carcinomas
(HCC) and 58 metastases). Contrast curve, gray level
histogram, and gray level co-occurrence matrix texture
features were extracted from the DCE-MR and T2-
weighted images. In addition, risk factors including the
presence of steatosis, cirrhosis, and a known primary
tumor were used as features. Fifty features with the
highest ANOVA F- score were selected and fed to an
extremely randomized trees classifier. The classifier
evaluation was performed using the leave-one-out
principle and receiver operating characteristic (ROC)
curve analysis. They showed that the overall accuracy for
the classification of the five major focal liver lesion types
is 0.77. The sensitivity/specificity is 0.80/0.78, 0.93/0.93,
0.84/0.82, 0.73/0.56, and 0.62/0.77 for adenoma, cyst,
hemangioma, HCC, and metastasis, respectively [46].
These data are similar to the data by Gatos et al. which
reported an overall accuracy of 0.90 for the classification
of benign, HCC and metastatic focal liver lesions using
only T2-weighted MR images [47].
The prognostic and predictive value of radiomics in

colorectal cancer metastases to the liver have been well
studied, with several studies demonstrating the utility of
diagnostic imaging in predicting clinical outcomes. Data
from the current literature highlight the central role of
both KRAS mutations as strong prognostic and predictive

biomarkers among patients undergoing liver colorectal
metastases resection (mCRC). In particular, mutations in
KRAS were strongly associated with worse overall survival
(OS) and recurrence-free survival (RFS), as well as specific
patterns of recurrence among patients with colorectal liver
metastases mCRC [16]. The possibility to correlate radio-
mic parameters to KRAS status offers notable advantages
over qualitative imaging assessment, allowing a better pa-
tient selection for cancer therapy, predicting response to
treatment, distinguishing favorable subsets of patients
from those with poor prognosis, evaluating which patients
may benefit from surgical treatment. Moreover, a largely
underappreciated aspect is the potential that radiomics
may be just as pronounced in the economic realm because
further optimization of patient selection and early
recognition of toxicities undoubtedly influence the cost-
effectiveness of cancer care [16]. In our previous study, we
assessed the association of RAS mutation status and
radiomics-derived data by Contrast Enhanced-Magnetic
Resonance Imaging (CE-MRI) in liver metastases. Texture
metrics and parameters based on lesion morphology were
calculated. Per-patient univariate and multivariate analysis
were made. Wilcoxon-Mann-Whitney U test, receiver op-
erating characteristic (ROC) analysis, pattern recognition
approaches with features selection approaches were con-
sidered. Significant results were obtained for texture fea-
tures while morphological parameters had not significant
results to classify RAS mutation. The results showed that
using a univariate analysis was not possible to discriminate
accurately the RAS mutation status. Instead, considering a
multivariate analysis and classification approaches, a KNN
exclusively with texture parameters as predictors reached
the best results (AUC of 0.84 and an accuracy of 76.9%
with 90.0% of sensitivity and 67.8% of specificity on train-
ing set and an accuracy of 87.5% with 91.7% of sensitivity
and 83.3% of specificity on external validation cohort)
[16]. Also Dercle et al. assessed the role of radiomics
signature to predict tumor sensitiveness to irinotecan, 5-
fluorouracil, and leucovorin (FOLFIRI) alone (F) or in
combination with cetuximab (FC) [48]. The signature
(area under the ROC curve [95% confidence interval (CI)])
used temporal decrease in tumor spatial heterogeneity
plus boundary infiltration to successfully predict sensitiv-
ity to antiepidermal growth factor receptor therapy
(FCHQ: 0.80 [95% CI = 0.69 to 0.94], FCSD: 0.72 [95%
CI = 0.59 to 0.83]) but failed with chemotherapy (FHQ:
0.59 [95% CI = 0.44 to 0.72], FSD: 0.55 [95% CI = 0.43 to
0.66]). In cetuximab containing sets, radiomics signature
outperformed existing biomarkers (KRAS-mutational
status, and tumor shrinkage by RECIST 1.1) for detection
of treatment sensitivity and was strongly associated with
OS (two-sided P < .005) [48]. In an analysis of 77 mCRC
patients, Lubner et al. investigated tumor heterogeneity
through analysis of several quantitative texture parameters,
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including entropy, skewness, mean positive pixels, and
standard deviation [49]. Correlations between these im-
aging parameters and patients clinico-pathologic features
demonstrated an association between less entropy, standard
deviation, and a higher mean positive pixel value with
tumor grade. Furthermore, the degree of skewness was
negatively correlated with KRAS mutations, and entropy
was associated with OS [49]. These results were replicated
in a retrospective study of 198 preoperative CT scans
for patients undergoing resection of colorectal liver
metastases [50].
An interesting field of application of radiomics is

related to the assessment of lesions before the lesions
became detectable. In a pre-clinical study Becker et al.
[51] investigate whether any texture features show a
correlation with intrahepatic tumor growth before the
metastasis is visible to the human eye. Texture analysis
was performed on the images yielding 32 texture fea-
tures derived from histogram, gray level co-occurrence
matrix, gray level run length matrix, and gray level size
zone matrix. The features were examined with a linear
regression model/Pearson correlation test and hierarch-
ical cluster analysis. From each cluster, the feature with
the lowest variance was selected. The research showed
that texture features may quantitatively detect liver
metastases before they become visually detectable by the
radiologist.

Assessment treatment
Radiomics analysis has also demonstrated its potential in
assessing treatment response for mCRC patients. In a
study of 21 patients, Rao et al. compared CT texture
analysis to Response Evaluation Criteria in Solid Tumors
(RECIST) for assessing response to chemotherapy. Inter-
estingly, they found that quantitative changes in entropy
and uniformity were better at differentiating between
good and poor responses when compared to changes in
size or volume when using the RECIST criteria [51].
These results suggest that texture analysis may be better
at predicting treatment response when compared to
conventional size criteria, further expanding the utility
of diagnostic imaging. MRI-based texture analysis has also
been used to analyze treatment response to Yttrium-90
radioembolization in patients with liver metastases. In a
retrospective cohort of 37 patients who underwent radio-
embolization, serial imaging based upon texture analysis
and RECIST criteria monitored treatment response. The
researchers showed that in patients with progressive dis-
ease, texture analysis was able to detect progression an
average of 3.5 months before RECIST [52]. These findings,
in addition to the ones previously addressed, demonstrate
the diagnostic, prognostic, and therapeutic implications of
imaging features, emphasizing their potential to signifi-
cantly affect liver cancer outcomes [53–58].

Current limitations
At present, research on radiomics is still in its infancy
and there are no standardized and unified standards for
the complicated research process.
Radiomics features contain characteristics of both im-

aging and numeric features. Radiomics features generally
refer to “agnostic” quantitative measurements that are
mathematically extracted and differ from “semantic”
features such as those covered by radiological lexicons
[59, 60]. Four main radiomics phenotypes have been
used to capture tissue heterogeneity: 1) volume and
shape; 2) first-order.
statistics to assess voxel distributions without consid-

ering their spatial relationship; 3) second-order statistics
(texture analysis) to study spatial relationships among
voxels; and 4) transformed features [61, 62].
Similar to common imaging biomarkers, the reprodu-

cibility of radiomics features can be questioned due to
the nature of the imaging data itself. For example, intra-
individual test-retest repeatability, image-acquisition
technique, multi-machine reproducibility, and image
reconstruction parameters all contribute in challenging
reproducible research in radiomics. Another major chal-
lenge is imposed by the variations among the different
techniques to process the images into analyzable quanti-
tative data. One can obtain widely different results from
the same radiomics data by using different transformation
or feature-selection methods. With all these variations in
image acquisition and processing in radiomics, it seems a
daunting task to obtain a stable, generalizable result that
can be consistently reproduced. Therefore, the reproduci-
bility of radiomics features and modeling can be easily
challenged, and great effort should be made to reduce
variations [63–69].
Although most studies report rigorously quality-con-

trolled manual segmentation, fully automated segmenta-
tion algorithms should be implemented for achieving
standardization. Another important issue in several
studies is the absence of clear identification of causes for
false-positive results to further improve the capabilities of
Convolutional neural network. In addition, for the selec-
tion of ROI, there is currently no suitable algorithm to
calibrate tumor regions. Most studies calibrated ROI by
radiologists, which increases the amount of pre-work,
while calibration by different people will have an impact
on the subsequent establishment of the model, leading to
limited reproducibility of the results and comparability be-
tween studies [65]. In addition, a lack of standardization
in reporting the results of research often makes it confus-
ing for readers. We propose that future studies should
report features based on the ‘Image biomarker standard-
isation initiative’ using formal nomenclature and corner
marks. Furthermore, traditional machine-learning
algorithms such as random forests and deep- learning
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algorithms like the neural network that have emerged in
recent years can both be used for the establishment of
radio- mics models. The algorithms used by each type of
research are different. Still, there is no research to prove
which algorithms are the most suitable for such work.
Finally, most of the current research results are still in the
training sample stage, so the high accuracy of the model
does not reflect its actual predictive ability. Whether the
model is effective or not depends on the validation phase
by the test sample [65].
Current published studies rely on the data obtained

from cohort with limited sample size. These databases
should be made with clearly defined criteria, including
definite histopathological diagnosis, genomic details, and
large amount of clinical and biological data of patients.

Conclusion
In conclusion, while initial studies looking at radiomics
have been very promising, there has been poor
standardization and generalization of radiomic results,
which limit the translation of this approach into clinical
practice. Clear limitations of this field are emerging, espe-
cially with regard to data-quality control, repeatability,
reproducibility, generalizability of results, and issues
related to model overfitting. To address those problems,
we propose that future radiomic research should be
assessed via the radiomics quality score. By doing so,
radiomics studies can be more comparable and increase
its potential to be applied in future clinical practice, so
that the advance in radiomics will largely contribute to the
development of personalization and precision medicine.
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