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Abstract

Background: The association between human cytomegalovirus (HCMV) and glioblastoma multiforme (GBM) is
becoming a new concept. However, information on the geographic variability of HCMV prevalence in GBM remains
scarce. Moreover, the potential roles of various viruses, such as polyomaviruses and oncogenic viruses, in gliomagenesis
remain unclear. Our aim was to investigate the prevalence of HCMV in GBM among Japanese patients. Furthermore,
this was the first study that evaluated infection with four new human polyomaviruses in GBMs. This study also
provided the first data on the detection of human papillomavirus (HPV) in GBM in the Eastern world.

Methods: We measured the number of various viral genomes in GBM samples from 39 Japanese patients using
real-time quantitative PCR. The tested viruses included HCMV, Merkel cell polyomavirus, human polyomavirus
(HPyV) 6, HPyV7, HPyV9, Epstein–Barr virus, human herpesvirus 8, and HPV. Our quantitative PCR analysis led
to the detection of eight copies of the HCMV DNA mixed with DNA extracted from 104 HCMV-negative cells.
The presence of HCMV and HPV genomes was also assessed by nested PCR. Immunohistochemical study was
also carried out to detect HPV-derived protein in GBM tissues.

Results: The viral DNAs were not detectable, with the exception of HPV, which was present in eight out of
39 (21%) GBMs. All HPV-positive cases harbored high-risk-type HPV (HPV16 and HPV18). Moreover, the HPV
major capsid protein was detected in GBM tumor cells.

Conclusions: In contrast with previous reports from Caucasian patients, we did not obtain direct evidence in
support of the association between HCMV and GBM. However, high-risk-type HPV infection may play a potential
etiological role in gliomagenesis in a subset of patients. These findings should prompt further worldwide
epidemiological studies aimed at defining the pathogenicity of virus-associated GBM.
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Background
A significant portion of human cancer cases worldwide,
an estimated 15%–20%, may be attributed to viral infec-
tion [1]. Several studies have indicated an exciting connec-
tion between human cytomegalovirus (HCMV) infection
and glioblastoma multiforme (GBM), which is the most
malignant primary brain tumor of human adults. In these
studies, HCMV gene sequences were detected in >90%–
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95% of cases of GBM, and lower levels of HCMV expres-
sion in tumors were associated with longer survival of
patients with GBM [2-8]. Furthermore, recent studies
demonstrated a survival benefit in patients with GBM
who received standard therapy for GBM in combination
with antiviral valganciclovir treatment [9,10], although this
remains to be confirmed by additional studies. Thus, the
role of HCMV in the pathogenicity of GBM is attracting
increasing interest.
In contrast with these findings, several conflicting re-

ports indicated a lack of association between HCMV and
GBM [11-13]. A more recent study used next-generation
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sequencing to show that HCMV sequences are absent in
high-grade gliomas [14]. Thus, the association between
HCMV and GBM reported by some but not all studies
highlights the need for additional worldwide surveys. In
fact, to date, all investigations of links between HCMV
and GBM have stemmed from American and European
populations, and the prevalence of HCMV in GBMs in
other regions of the world, such as Asia, has not been
clarified. Recently, Yamashita et al. [15] collected GBM
samples from hospitals located in the Nagoya area of
Japan and tested them for the presence of the HCMV
genome; however, none of their cases had detectable
HCMV DNA sequences. To determine the frequency at
which HCMV is present in Asian populations, we fur-
ther investigated the prevalence of HCMV and viral load
in GBMs from Japanese subjects, using highly sensitive
quantitative PCR.
If HCMV infection is an important risk factor for the

development of most cases of GBM, it would be worth ex-
ploring whether other infectious pathogens coexist with
HCMV in these tumors, possibly as cofactors of pathogen-
esis. For example, several studies suggested that some
polyomaviruses, such as the simian virus 40 (SV40) and
JC virus (JCV), are associated with GBM [16,17]. In this
context, we explored for the first time the existence
of newly discovered human polyomaviruses, including
Merkel cell polyomavirus (MCPyV), human polyomavi-
rus 6 (HPyV6), HPyV7, and HPyV9, in GBM samples.
MCPyV is the first oncogenic polyomavirus and was
originally found in Merkel cell carcinoma [18]; subse-
quent studies showed that MCPyV DNA was present in
other malignancies, such as cervical cancer and lung can-
cer [19,20]. In addition, we defined the prevalence of three
human oncogenic viruses in GBMs: Epstein–Barr virus
(EBV); human herpesvirus 8 (HHV8); and human papillo-
mavirus (HPV). Our study provided the first data on the
detection of high-risk-type HPVs in GBMs in the Eastern
world.

Results
Quantitative PCR for HCMV in GBMs
To detect HCMV DNA, we employed quantitative PCR
targeting two different HCMV regions using the primers
and probes for major immediate early (IE) and glycopro-
tein B (gB) genes [21,22]. The primers and probes were
verified using DNA from a plasmid containing the
HCMV IE or gB genes, DNA extracted from the HCMV
AD169 strain (Advanced Biotechnologies, Columbia,
MD, USA), and DNA from the AD169 strain admixed
with cellular DNA. A standard curve for HCMV was
generated using serial dilutions of the genome of the
AD169 strain. Our quantitative PCR analysis detected at
least 1.5 HCMV copies per PCR reaction (i.e., 0.0008
copies per cell) from the AD169 strain DNA admixed
with 200 ng of cellular DNA extracted from HCMV-
negative HEK293 cells. The number of cells in each
sample was assessed by comparing the amounts of
RNaseP product. The estimated number of cells per PCR
reaction in the GBM samples varied from 5 to 7315 (me-
dian, 301; mean, 1028) cells. For positive controls of HCMV
detection, three formalin-fixed paraffin-embedded (FFPE)
samples were obtained from patients with HCMV pancrea-
titis (denoted as HCMV-P1), HCMV enteritis (HCMV-P2),
and HCMV pneumonia (HCMV-P3), respectively. The
number of HCMV copies in these positive controls was
415, 472, and 3852 copies per reaction, or 24.1, 3.82, and
399.55 copies per cell, respectively. In clear contrast, the
HCMV IE and gB genes were not detectable in any of
the 39 GBMs. All samples were tested at least in triplicate.
The results are summarized in Table 1.
We also analyzed the GBM samples for the existence

of HCMV DNA by nested PCR with primer sets target-
ing the HCMV gB gene, as previously reported [2,23].
Likewise, HCMV DNA was not detectable in any of our
GBM samples (Table 1).

Detection of human polyomaviruses and oncogenic
viruses
Next, we tested the GBM samples for the presence of
four human polyomaviruses (MCPyV, HPyV6, HPyV7,
and HPyV9) and three oncogenic viruses (EBV, HHV8,
and HPV). These viral DNAs were not detected, with
the exception of HPV, which was detected in three out
of 39 GBMs by real-time quantitative PCR targeting
HPV16 and HPV18 sequences (Table 1). One patient
was infected with HPV16 and two patients with HPV18,
and the viral copy numbers ranged from 0.05 to 0.18 per
PCR reaction, or from 0.001 to 0.006 per cell. For posi-
tive controls of HPV detection, eight FFPE samples were
obtained from the following patients: four cervical can-
cers (two patients with HPV16 and two with HPV18 in-
fection) and four oropharyngeal cancers (two patients
with HPV16 and two with HPV18 infection). The HPV
copy number of these positive control tissues ranged
from 0.04 to 491.46 copies per reaction, or from 0.0002
to 1.41 copies per cell (Table 1). Thus, the HPV copy
number in HPV-positive GBMs tended to be lower than
those observed in the HPV-infected cervical cancers and
oropharynx cancers that were used as positive controls.
Cases of GBM may be infected with HPVs other than

HPV16 and HPV18 [24]. Therefore, to determine the de-
tection frequency and types of HPV, the GBM samples
were also subjected to standard PCR using the primers
that were employed for the quantitative PCR assay as well
as GP5+/GP6+ primers [25], or to nested PCR using the
first primers MY09/11 and the second primers GP5+/GP6+
[25,26]. The PCR products were sequenced directly, and
the sequencing data obtained were BLAST searched using



Table 1 Results of real-time quantitative PCR to detect various viruses in the 39 patients with GBM and in positive con-
trol samples

Viral DNA copy number*

Case no. Age Sex HCMV MCPyV HPyV6 HPyV7 HPyV9 EBV HHV8 HPV Cell
numbergB IE PCR** Type 16 Type 18 PCR***

1 60 F 0 0 ND 0 0 0 0 0 0 0 0 ND 32

2 58 F 0 0 ND 0 0 0 0 0 0 0 0 ND 676

3 51 M 0 0 ND 0 0 0 0 0 0 0 0 type 16 417

4 74 F 0 0 ND 0 0 0 0 0 0 0 0 ND 1280

5 72 M 0 0 ND 0 0 0 0 0 0 0.13 0 type 16 21

6 68 F 0 0 ND 0 0 0 0 0 0 0 0 ND 135

7 49 M 0 0 ND 0 0 0 0 0 0 0 0 ND 770

8 71 M 0 0 ND 0 0 0 0 0 0 0 0 type 16 118

9 60 M 0 0 ND 0 0 0 0 0 0 0 0 ND 370

10 42 M 0 0 ND 0 0 0 0 0 0 0 0 ND 34

11 42 M 0 0 ND 0 0 0 0 0 0 0 0 ND 221

12 82 F 0 0 ND 0 0 0 0 0 0 0 0 ND 1236

13 40 M 0 0 ND 0 0 0 0 0 0 0 0 ND 48

14 77 M 0 0 ND 0 0 0 0 0 0 0 0 ND 301

15 62 F 0 0 ND 0 0 0 0 0 0 0 0 ND 454

16 75 M 0 0 ND 0 0 0 0 0 0 0 0 ND 138

17 73 M 0 0 ND 0 0 0 0 0 0 0 0 ND 26

18 43 F 0 0 ND 0 0 0 0 0 0 0 0 ND 157

19 50 F 0 0 ND 0 0 0 0 0 0 0 0 ND 133

20 46 M 0 0 ND 0 0 0 0 0 0 0 0 ND 5

21 82 M 0 0 ND 0 0 0 0 0 0 0 0 ND 114

22 4 F 0 0 ND 0 0 0 0 0 0 0 0 ND 954

23 46 M 0 0 ND 0 0 0 0 0 0 0 0 ND 533

24 70 F 0 0 ND 0 0 0 0 0 0 0 0 ND 590

25 65 F 0 0 ND 0 0 0 0 0 0 0 0 ND 33

26 59 F 0 0 ND 0 0 0 0 0 0 0 0 type 16 400

27 72 M 0 0 ND 0 0 0 0 0 0 0 0 ND 147

28 77 M 0 0 ND 0 0 0 0 0 0 0 0 ND 272

29 65 F 0 0 ND 0 0 0 0 0 0 0 0.05 type 18 50

30 72 M 0 0 ND 0 0 0 0 0 0 0 0 ND 214

31 77 M 0 0 ND 0 0 0 0 0 0 0 0 type 16 388

32 51 F 0 0 ND 0 0 0 0 0 0 0 0 ND 2637

33 77 F 0 0 ND 0 0 0 0 0 0 0 0 ND 5269

34 80 M 0 0 ND 0 0 0 0 0 0 0 0 ND 7022

35 81 M 0 0 ND 0 0 0 0 0 0 0 0 ND 3510

36 63 F 0 0 ND 0 0 0 0 0 0 0 0 ND 3205

37 70 M 0 0 ND 0 0 0 0 0 0 0 0 type 16 7315

38 70 M 0 0 ND 0 0 0 0 0 0 0 0 ND 705

39 88 F 0 0 ND 0 0 0 0 0 0 0 0.18 type 18 170

HCMV-P1a 827.37 2.01 17

HCMV-P2 671.98 270.96 123
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Table 1 Results of real-time quantitative PCR to detect various viruses in the 39 patients with GBM and in positive con-
trol samples (Continued)

HCMV-P3 3955.12 3748.20 10

MCPyV-P1 25879.50 188

MCPyV-P2 28.95 275

HPyV6-P1 107.60 92

HPyV6-P2 2.12 10

HPyV6-P3 0.20 254

HPyV7-P1 0.12 26

HPyV7-P2 0.45 10

HPyV7-P3 0.45 672

EBV-P1 61315.24 2316

EBV-P2 47466.54 2520

HHV8-P1 49621.12 1624

HPV16-P1 3.66 32

HPV16-P2 235.94 228

HPV16-P3 491.46 348

HPV16-P4 46.06 522

HPV18-P1 0.11 496

HPV18-P2 82.98 572

HPV18-P3 4.58 1191

HPV18-P4 0.04 10

*Viral DNA copy number is shown as per reaction.
**Results of nested PCR are also shown.
***Results of nested PCR and the HPV type are shown.
aPositive controls are as follows: HCMV-P1, HCMV+ pancreatitis (FFPE); HCMV-P2, HCMV+ enteritis (FFPE); HCMV-P3, HCMV+ pneumonia; MCPyV-P1, MCPyV+ Merkel
cell carcinoma (FFPE); MCPyV-P2, MCPyV+ cutaneous squamous cell carcinoma (FFPE); HPyV6-P1, HPyV6+ basal cell carcinoma (FFPE); HPyV6-P2, HPyV6+ melanoma
(FFPE); HPyV6-P3, HPyV6+ cutaneous squamous cell carcinoma (FFPE); HPyV7-P1, HPyV7+ basal cell carcinoma (FFPE); HPyV7-P2, HPyV7+ melanoma (FFPE); HPyV7-P3,
HPyV7+ cutaneous squamous cell carcinoma (FFPE); EBV-P1 and -P2, EBV+ lymphoblastoid cells (cell lines); HHV8-P1, HHV8+ KS-1 (cell line); HPV16-P1 and -P2, HPV16+

cervical cancer (FFPE); HPV16-P3 and –P4, HPV16+ oropharyngeal cancer (FFPE); HPV18-P1 and –P2, HPV18+ cervical cancer (FFPE); HPV18-P3 and –P4,
HPV18+ oropharyngeal cancer (FFPE).
F: female; M: male; ND: not detected.
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the National Center for Biotechnology Information (NCBI)
database. Overall, eight out of 39 (21%) samples were posi-
tive for HPV by nested PCR, and all positive cases carried
high-risk-type HPV. Six patients were infected with HPV16
and two patients with HPV18.
To explore whether contamination of the normal brain

tissues affected the PCR results, we examined normal
brain tissues from two GBM cases that harbored the HPV
genome (cases 29 and 37). The normal brain tissues were
obtained during surgery and stocked as FFPE tissues. As a
result, HPV DNA was not detected in the non-neoplastic
tissues, suggesting that that the HPV positivity resulted
from HPV-infected GBM tumor cells.
To evaluate the expression of HPV antigen, immuno-

histochemistry was performed using the mouse mono-
clonal antibody K1H8 against the HPV major capsid
protein [27,28]. This antibody is a broadly-reactive anti-
body to the following HPV types: 6, 11, 16, 18, 31, 33,
42, 51, 52, 56, and 58. The immunohistochemical study
was carried out on three GBM samples, cases 29, 37,
and 39, for which enough material was available. These
cases were shown to be positive for HPV16 or HPV18
DNA by PCR assays (Table 1). Sample of HPV-positive
cervical cancer (HPV16-P2) was used as a positive con-
trol. All cases showed positivity for staining of the HPV
major capsid protein (Figure 1), indicating that the GBM
tumor cells expressed the HPV-derived antigen. The im-
munochemical signal was detected in the nucleus of
tumor cells, partially in the cytoplasm.

Discussion
The presence of HCMV in GBM was first reported by
Cobbs and colleagues [2]. Since this pioneer report, a con-
troversy was generated regarding the presence or absence
of this virus in this type of tumor [11-13]. Further studies
argued that the discrepancy of the results was possibly re-
lated to technical reasons, such as differences in the sensi-
tivity of the methods used by different groups, and a
consensus was reached that HCMV sequences exist in
most, but not all, GBMs [29]. However, this consensus



Figure 1 Immunohistochemical staining of GBM tumor cells for HPV major capsid protein. Immunohistochemical analysis using the K1H8
monoclonal antibody confirmed the expression of the HPV major capsid protein in the nucleus of tumor cells, partially in the cytoplasm. (A) Case 29;
(B) Case 37. Original magnification × 100.
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was achieved based on findings from Caucasian patients
with GBM, and information on the geographic variability
of HCMV prevalence in this type of tumor is scarce. In
this study, we measured the HCMV loads in both FFPE
and frozen GBM tumors from 39 Japanese patients using
highly sensitive quantitative PCR. Our quantitative PCR
analysis detected eight copies of HCMV DNA mixed
with DNA extracted from 104 HCMV-negative cells. No
cases harbored detectable HCMV genomes. Furthermore,
nested PCR assays did not detect HCMV in GBM tissues.
These results indicate that HCMV is unlikely to play a dir-
ect role in the pathogenesis of GBM in cases collected in
the south of Japan. Recently, another research group was
also unable to demonstrate the presence of HCMV ge-
nomes in GBM samples from a population of patients
from the central region of Japan [15]. The absence of
HCMV in Japanese patients with GBM shown by these
two independent studies raises the possibility that the
prevalence of HCMV in GBM varies among populations
with different ethnic origins. Worldwide epidemiology
studies have shown that individuals of European descent
are more frequently affected by GBM than are those of
Asian or African descent [30,31]. In the US, the incidence
of GBM is two or more times greater in white than in
black people [30,32]. Thus, differences in incidence be-
tween Western and Asian countries and among ethnic
groups residing in the US suggest a genetic predisposition
to GBM. GBM is a tumor that arises from glial cells. If
HCMV, which is a ubiquitous herpesvirus that is present
in the majority of the population worldwide, is a predom-
inant risk factor for GBM, it is conceivable that the sus-
ceptibility of glial cells to HCMV infection might vary
according to race. It is known that clinical HCMV isolates
display genetic polymorphisms in multiple genes, which
are supposed to be related to strain-specific tissue tropism
and to the ability to established persistent infection [33].
The most polymorphic genes are those that encode viral
envelope glycoproteins, which play important roles in
virus entry and in cell-to-cell virus spread [33,34]. A sur-
vey showed that the genotypic variants of the gene that
encodes glycoprotein N can be divided into four groups
according to the geographical provenance of clinical
HCMV isolates, i.e., European, Northern American, Aus-
tralian, and Chinese types [35]. Thus, genetic polymor-
phisms in variants isolated from geographically and
migrationally different regions might be implicated in dif-
ferent HCMV-related pathogeneses according to race.
Therefore, our present findings should prompt further in-
vestigation of the prevalence of HCMV in a series of GBM
samples from diverse regions of the world, especially in
Asia and Africa, as well as studies aimed at determining
whether the different detection rates of HCMV are caused
by ethnic variation, rather than technical sensitivity.
To date, three polyomaviruses, SV40, JCV, and BKV,

have been suggested to be associated with the develop-
ment of brain tumors [1,36,37]. A recent serological
study showed a significant association between SV40
and a subset of GBM cases [16]. Because serological
cross-reactivity is known among the polyomavirus family
[38], it is worthwhile to test the association between new
human polyomaviruses and GBM. Furthermore, it has
been proposed that polyomaviruses play a synergistic
role with other viruses in oncogenic transformation [39].
In this context, it is worth investigating whether HCMV-
infected GBM is also coinfected with human polyoma-
viruses. In this study, we explored for the first time the
existence of four newly discovered human polyomaviruses,
MCPyV, HPyV6, HPyV7, and HPyV9, in GBMs. However,
the polyomavirus DNA sequences were not detectable,
suggesting that these polyomaviruses are unlikely to play a
pathogenetic role in our patients with GBM.
We also searched for the viral DNAs of two oncogenic

herpesviruses, EBV and HHV8, in GBMs, with negative re-
sults. Recently, Cimino et al. [14] reported that the EBV
DNA sequence was found in five out of 21 (24%) patients
from the US with high-grade gliomas using next-generation
sequencing analysis. Although the discrepancy in the
EBV prevalence rates might be explained in part by geo-
graphic epidemiological variations in patients, or merely
by differences in the technical approaches used, our study
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suggests that EBV and HHV8 are not key pathogens in
the development of GBM.
HPV is a common oncogenic virus in human. Re-

cently, Vidone et al. [24] reported that HPV DNA was
detected in 12 out of 52 Italian patients with GBM
(23%) using nested PCR. Among their 12 HPV-positive
cases, three cases were infected with HPV16 and nine
were infected with HPV6 (low-risk type). In the present
study, we found eight HPV-positive GBMs (21%). The
detection rate was very similar to that obtained in the
Italian population. In contrast, our study showed that
the detectable HPVs were all of high-risk types (HPV16
Table 2 Sequences of the primers and probes used for real-ti

Target Sequence (5′→ 3′)

HCMV gB F GGCGAGG

R TGAGGCT

probe FAM-TTGG

IE F GACTAGT

R GCTACAA

probe FAM-AGC

MCPyV ST F GCAAAAA

R CCACCAG

probe FAM-TATC

HPyV6 LT F TGGTCCC

R GCCAGAA

probe FAM-TGC

HPyV7 LT F ACTGGTT

R TGCATAA

probe FAM-CAC

HPyV9 VP1 F TGCTGTTG

R AACAACC

probe FAM-CTG

EBV LMP1 F GTTGATC

R GTGTCTG

probe FAM-TTGT

HPV16 E6 F AGGACCC

R AGTCATA

probe FAM-ATG

HPV18 L1 F GGTTCAG

R TACACGC

probe FAM-TCG

HHV8 ORF26 F AGCCGAA

R TCCGTGT

probe FAM-TGC

RNase P F AGATTTG

R GAGCGGC

probe FAM-TTCT
and HPV18). Importantly, we measured for the first time
the HPV viral loads in GBM tissues, and found that the
copy numbers of infected HPV were relatively low com-
pared with those detected in the HPV-positive cervical
cancers and oropharyngeal cancers that were used as
positive controls. The HPV genome was not detectable
in controlled normal brain tissues. Currently, it is un-
known whether persistent HPV infection is directly asso-
ciated with gliomagenesis in a subset of patients. However,
detection of the HPV major capsid protein suggest that
production of viral protein from HPV genome is ongoing
in GBM tumor cells. Otherwise, HPV might be just a
me quantitative PCR analysis

Reference

ACAACGAAATCC [21]

GGGAAGCTGACAT

GCAACCACCGCACTGAGG-TAMRA

GTGATGCTGGCCAAG [22]

TAGCCTCTTCCTCATCTG

CTGAGGTTATCAGTGTAATGAAGCGCC-TAMRA

AACTGTCTGACGTGG [40]

TCAAAACTTTCCCA

AGTGCTTTATTCTTTGGTTTGGATTTC-TAMRA

CTTTTGTAACAGC [41]

TTGCCAGAGGATA

AAACATGGCTTATGCAGAAA-TAMRA

CCCACCAAATGAG [41]

ACCAGGCCTTAAAA

CCTTTTTGCAAAAGCCTTT-TAMRA

ATATTGTTGGAATTCA [42]

CGTTTCCTTAGAGTTACA

GAGAGGCCTACCT-NFQ-MGB

TCCTTTGGCTCCTC [43]

CCCTCGTTGG

TGAGGGTGCGGGAGGGAGTCATCGTGG-TAMRA

ACAGGAGCGAC [44]

TACCTCACGTCGCAGT

CACAGAGCTGCAAACAA-TAMRA

GCTGGATTGCG [44]

ACACGCTTGGC

CAAACGTTCTGCTCC-TAMRA

AGGATTCCACCAT [45]

TGTCTACGTCCAG

AGCAGCTGTTGGTGTACCACAT-TAMRA

GACCTGCGAGCG [40]

TGTCTCCACAAGT

GACCTGAAGGCTCTGCGCG-TAMRA
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transient ‘hit and run’ infectious pathogen, which would
explain the small number of HPV-positive GBMs and
lower viral loads detected in the tumor tissues. According
to this theory, HCMV may first begin to proliferate in the
glial cells and then it may cause cell proliferation. Add-
itional cellular gene mutations during tumor progression
may in part render HCMV expression dispensable for
gliomagenesis.

Conclusions
This was the first presentation of data regarding the preva-
lence of various viruses, including HCMV, human onco-
genic viruses (EBV, HHV8, HPV, and MCPyV), and new
human polyomaviruses (HPyV6, HPyV7, and HPyV9) in
GBMs from an Asian population. In contrast with many
previous reports based on Caucasian patients, we were not
able to obtain direct evidence to support the association
between HCMV and GBM. Furthermore, it is unlikely that
GBM is associated with human oncogenic viruses, includ-
ing EBV, HHV8, and MCPyV. However, our investigations
demonstrated the presence of the viral genome and protein
of high-risk-type HPVs in a subset of patients with GBMs.
These findings should stimulate further large-scale world-
wide epidemiological and virological studies aimed at de-
fining the pathogenicity of HPV-positive GBM.

Methods
Patients and samples
This study included 39 Japanese patients with GBM grade
IV (22 men and 17 women). The median age of the
patients was 68 years (range, 4–88 years). Thirty-one
FFPE tumor tissues (denoted as cases 1–31) and eight fro-
zen tumor tissues (cases 32–39) were obtained from pa-
tients from the Kochi University Hospital. The patients
resided in the Kochi prefecture, which is located on
Shikoku Island in southern Japan. This study was ap-
proved by the Ethics Committee of Kochi Medical
School, Kochi University.

DNA extraction and detection of viral DNAs
For DNA extraction from FFPE tumors, three 5-μm-
thick slices were prepared for DNA extraction using a
ReliaPrep FFPE gDNA Miniprep System (Promega,
Tokyo, Japan). From frozen tumor samples or cultured
cells, DNA was isolated using a QIAamp DNA Mini Kit
(Qiagen, Tokyo, Japan).
Two hundred nanograms of extracted DNA was ana-

lyzed for the detection and quantification of eight differ-
ent viruses (HCMV, MCPyV, HPyV6, HPyV7, HPyV9,
EBV, HHV8, and HPV) via TaqMan-based real-time
PCR using a StepOne Plus Real-Time PCR System (Life
Technologies, Tokyo, Japan). Real-time PCR reactions
and quantitative analyses were performed primarily
based on methods described previously [21,22,40-45].
The primers and probes used in this study are shown in
Table 2. The reaction mixture used for all real-time PCR
assays was prepared as follows: TaqMan Gene Expres-
sion Master Mix (Life Technologies), 900 nM of each
primer, 250 nM dual-labeled probe, and 200 ng of DNA.
The PCR conditions were as follows: 50°C for 2 min and
95°C for 10 min, followed by 50 cycles of 95°C for 15 s
and 60°C for 1 min. Collected data were analyzed using
StepOne Software v2.2 (Life Technologies). The house-
keeping gene RNaseP was used as an internal control,
and the PCR mixture without the template DNA was
used as a negative control for each experiment.

DNA sequencing analysis
After the amplification of DNA by standard PCR or
nested PCR, the PCR products were purified with a High
Pure PCR Product Purification Kit (Roche Diagnostics,
Tokyo, Japan) and then sequenced directly using an ABI
Prism BigDye Terminator v1.1 Cycle Sequencing Kit
(Life Technologies). The sequenced products were analyzed
using a model 3130 Genetic Analyzer (Life Technologies).
The nucleotide sequences obtained were aligned and edi-
ted with BioEdit software (Ibis Biosciences, Carlsbad, CA,
USA).

Immunohistochemistry
To detect HPV protein, immunohistochemistry was per-
formed on FFPE tissue sections using a mouse monoclonal
antibody, K1H8 against the HPV major capsid protein
[27,28]. The immunohistochemical study was carried out
using a VENTANA DISCOVERY autostainer system ac-
cording to the protocol provided by the manufacturer
(Roche Diagnostics, Tokyo, Japan). The antomated protocol
is based on an indirect biotin-avidin system using a bio-
tinylated universal secondary antibody and diaminobenzi-
dine substrate with hematoxylin counterstainig.
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