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Abstract

Background: Epstein Barr virus (EBV) is a gammaherpesvirus that is associated with nasopharyngeal carcinoma
(NPC) and endemic Burkitt lymphoma (eBL). EBV carries several latent genes that contribute to oncogenesis
including the latent membrane protein 1 (LMP-1), a known oncogene and constitutively active CD40 homolog.
Variation in the C terminal region of LMP-1 has been linked to NPC pathogenesis, but little is known regarding
LMP-1 variation and eBL.

Results: In the present study, peripheral blood samples were obtained from 38 eBL patients and 22 healthy
controls in western Kenya, where the disease is endemic. The LMP-1 C-terminal region from these samples was
sequenced and analyzed. The frequency of a 30 base pair deletion of LMP-1 previously linked to NPC was not
associated with eBL compared to healthy controls. However a novel LMP-1 variant was identified, called K for Kenya
and for the G318K mutation that characterizes it. The K variant LMP-1 was found in 40.5% of eBL sequences and
25.0% of healthy controls. All K variant sequences contained mutations in both of the previously described minimal
T cell epitopes in the C terminal end of LMP-1. These mutations occurred in the anchor residue at the C-terminal
binding groove of both epitopes, a pocket necessary for MHC loading.

Conclusions: Overall, our results suggest that there is a novel K variant of LMP-1 in Kenya that may be associated
with eBL. Further studies are necessary to determine the functional implications of the LMP-1 variant on early
events in eBL genesis.
Background
Epstein Barr virus (EBV) is a well known infectious co-
factor involved in the development of several malignan-
cies, including endemic Burkitt lymphoma (eBL) and
nasopharyngeal carcinoma (NPC) (reviewed in [1]). Still
under question, however, is how EBV functions to drive
malignancy. One possibility is that genetic variation in
EBV leads to immune evasion of virally infected cells.
EBV encodes a number of genes that contribute to

maintaining cell proliferation, blocking apoptosis, and
contributing to the malignant phenotype of cancer cells
[2-5]. One of the main EBV encoded oncogenes is latent
membrane protein-1 (LMP-1) [6]. Latent membrane
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protein-1 is expressed during primary B cell infection,
functioning as a constitutively active CD40 homolog and
affecting many cellular proteins including TRADD, JAK3,
PI3K, and RIPs [4,7,8]. Overexpression of LMP-1 in EBV-
negative cell lines has shown that LMP-1 blocks apoptosis,
increases cytokine production, cellular migration and
transformation, and decreases cellular adhesion [8,9]. The
structure of LMP-1 includes six transmembrane regions
starting at the N terminus, with a long cytoplasmic tail
containing three C terminal activating regions (CTAR), re-
sponsible for activating signaling cascades (Figure 1) [8].
Genetic variation of LMP-1 has been classified using

different schemes [10-13]. These schemes were devel-
oped from sequences of different geographic areas and
cellular origins. Sandvej and colleagues published the
first of these classification schemes using a variety of
healthy European sequences [12]. In this study Sandvej
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Figure 1 Diagram of LMP-1 structural and functional motifs. Cytoplasmic terminal activating regions are labeled CTAR1-3 and labeled with
their corresponding amino acid numbers. The region that we sequenced is labeled, along with the positions of amino acid mutations in the
K variant sequence, designated with *. The 10 amino acid deletion associated with NPC is labeled with X. The T cell epitope region of CTAR3 is
labeled TCE, the JAK3 binding region is labeled JAK3, and the TRADD motif of CTAR2 is labeled TRADD.
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and colleagues identified 4 variants of LMP-1 sequences
in healthy Caucasians and labeled them A, B, C, and D
[12]. The most frequent LMP-1 variant observed was vari-
ant A (41.2%), followed by variant C (26.5%), variant D
(17.6%), variant B (11.8%), and uncharacterized (2.9%)
[12]. Previous sequencing studies had been performed
using tumor tissue rather than peripheral blood from
healthy individuals [14], potentially selecting for certain
viral sequences.
Mutations and deletions within the CTARs of LMP-1

have been associated with disease [15-17]. Specifically, a
10 amino acid deletion mutant of LMP-1 as compared to
the prototypical B95.8 EBV strain has been associated with
NPC cases in Asia, Europe, and North Africa [18-20]. In a
retrospective study of EBV-positive lymphoproliferative
disorders, the LMP-1 deletion mutant was linked to ma-
lignant phenotypes [21]. Deletions in LMP-1 have also
been associated with other types of EBV-positive lymph-
omas [22-24]. One study of children in Turkey with
Burkitt lymphoma reported a high frequency of the larger
69 base pair deletion variant of LMP-1, but this study did
not compare incidence to healthy controls [25]. A study in
Brazil reported that a similar high proportion of Burkitt
lymphoma patients and controls harbored deletion vari-
ants of LMP-1 [26]. Other studies have examined the as-
sociation of EBV variants with eBL and produced
conflicting results [13,27-30]. Focused studies on EBV
variation in eBL patients relative to healthy controls are
needed to clarify these divergent observations. To our
knowledge, no study has examined the extent of genetic
diversity of LMP-1 in an area endemic for BL or in eBL
patients.
Genetic variation in LMP-1 has been shown to correl-

ate with differences in T cell immunity [31-33]. Two
ways that variant LMP-1 can decrease T cell immunity
are through enhancement of regulatory T cells (Tregs)
and immune evasion. The role of Tregs in NPC was ex-
amined by Pai et al. wherein an NPC-associated LMP-1
variant failed to stimulate T cells as effectively as
wildtype LMP-1 in a mixed lymphocyte reaction [33].
The NPC-associated LMP-1 variant led to enhanced IL-
10 production by antigen presenting cells, enhancing
regulatory T cell function and reducing T cell responses
to LMP-1 [33]. LMP-1 is also a target for EBV cytotoxic
T lymphocytes (CTL) and has well described T cell epi-
topes [32,34]. Duraiswami and colleagues showed that
there are 6 LMP-1 peptide sequences that stimulate
LMP-1 specific T cells to produce IFN-γ. Each of these
regions was broken down into the minimal peptide se-
quences that were T cell epitopes. One of the T cell epi-
tope regions within LMP-1 falls within CTAR3 [34], an
area with known sequence variation [11,12,35]. A se-
quencing study of LMP-1 T cell epitopes from NPC pa-
tients showed no association with disease, however it
has not been shown whether LMP-1 variation within the
T cell epitope region is associated with immune evasion
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in eBL [34]. While LMP-1 is not expressed in eBL, T cell
control of EBV during primary infection of B cells may
be impaired by different LMP-1 variants.
The current study sought to answer several outstand-

ing questions. First, what is the diversity of LMP-1 se-
quence variation in an area endemic for eBL? Second,
are certain LMP-1 genotypes associated with eBL com-
pared to healthy controls? Finally, what does LMP-1
variation suggest about EBV pathogenesis? To answer
these questions the C terminus of LMP-1 was sequenced
from eBL patients and healthy controls from an eBL en-
demic area of western Kenya. A novel LMP-1 variant
was observed in the Kenyan population, was highly
prevalent in eBL patients, and carried mutations in the
C terminal amino acids of both minimal T cell epitopes
found in the portion of LMP-1 studied. These results
may have implications for EBV-mediated immune eva-
sion in the early events of Burkitt lymphomagenesis.

Results
Study populations
Endemic Burkitt lymphoma patients and healthy con-
trols were selected based on their availability from our
previously reported case control study [36]. In this study
only 13% of eBL patients were parasitemic by blood
smear at admission, although nearly all resided in a mal-
aria holoendemic area [37]. Also 28% of parents reported
giving their child antimalarial treatment in the two
weeks prior to presentation (Moormann, unpublished
observation). Therefore point prevalence malaria status
for eBL patients at presentation to this tertiary care hos-
pital is not an accurate indicator of recent malaria. We
have previously reported that 68% of this group of
healthy controls were malaria positive at sampling [36].
Additional controls (C17-C24) were included from a
nearby area of western Kenya [38], and of these 57%
were PCR positive for malaria. Although acute malaria
increases EBV load and possibly detectability [39], we
were able to amplify EBV DNA from all eBL patients
and healthy controls sampled, suggesting a low rate of
detection bias of EBV. After sequencing it was patho-
logically determined that two eBL patients had tumors
other than eBL (BL16 and BL39), and their sequencing
data were excluded from the analysis but can be found
in Additional file 1: Table S1. The mean age of eBL
patients was 90 months and for healthy controls was
Table 1 Demographic characteristics of study participants

Group Number enrolled Coinfections Excluded (n)* An

eBL 38 1 2

Control 22 2 0

n – number of samples.
mo – months.
*Samples were excluded if pathological diagnosis was not Burkitt lymphoma.
54 months. For eBL patients 56.8% were male and for
healthy controls, 40.9% were male. A summary of
demographic data on the study populations is shown
in Table 1.

Coinfection with multiple EBV variants
Coinfection with different EBV LMP-1 deletion variants
was determined by difference in the product size among
clones. One eBL patient and two healthy controls had
two discernible variants in LMP-1 size as determined by
the size of the cloned PCR product when analyzed by
gel electrophoresis (Figure 2). Both of the variants for
the three study participants were sequenced and pooled
with the results of the remaining sequences for analysis,
resulting in 39 eBL sequences and 24 healthy control
sequences.

Diversity of LMP-1 sequence variants
The T cell epitope region of CTAR3 through the 30 base
pair deletion region to the 3′ end of the LMP-1 gene
that was sequenced is shown in Figure 1. Isolates were
then categorized into the scheme defined by Sandvej and
colleagues and also compared with the prototypic B95.8
strain of EBV [15,35]. Because Sandvej et al. sequenced
LMP-1 from many healthy Europeans [12], and com-
pared the sequences to lymphoma patients [35], this
classification scheme was chosen for the present study.
In the present study of the C terminus of LMP-1, in
contrast to Sandvej et al., variant A was not observed,
while B, C, D, and B95.8 EBV LMP-1 variants were ob-
served. Table 2 represents the full array of mutations ob-
served in this study population, and the frequency of each
variant in healthy control and eBL samples is shown in
Figure 3. The only variant sequence represented exactly as
described by Sandvej was the C variant, which was present
in 15 (40.5%) eBL sequences and 7 (29.2%) control se-
quences (p=0.42, OR 1.65, 95% CI 0.55-4.97). However
other variants could be characterized as similar to C type,
differing only by single amino acid substitutions. These
variants were denoted C’ and when combined with true C
variant totaled 17 (45.9%) eBL samples and 10 (41.7%)
healthy controls (p=0.80, OR 1.19, 95% CI 0.42-3.36).
Thus no difference in the frequency of C variant was ob-
served between eBL and healthy control sequences.
Variants of several other previously described LMP-1

isolates were observed, including B, D, and B95.8. There
alyzed (n) Mean age (mo) Age range (mo) Sex (% male)

37 90 36-161 56.8

24 54 4-144 40.9



Figure 2 Gel electrophoresis image of plasmid digestion from three study participants. Lane 1 is the 100 base pair ladder, 500 bp has
increased intensity. Lanes 2-6 are five clones from participant C2, lanes 7-11 are from participant C11-C12, and lanes 12-16 are from participant
C13. The full-length product (~260 bp) is visible in all five clones from C2 and C13. The 30 base pair deletion mutant (~230 bp) is visible in two
clones (lanes 7 and 9, C11) of participant C11-C12.
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were no prototypical B strains, but 2 (7.7%) eBL sequences
and 4 (16.7%) healthy control sequences differed by only
one to two amino acids from the prototypical B strain.
There was no significant difference in the proportion
of B variant sequences between these two groups
(p=0.20, OR 0.29, 95% CI 0.05-1.70). A single D vari-
ant strain, which differed from the prototypical D
strain by two amino acids, was present in one healthy
control sequence and no eBL sequences (p=0.39, OR
Table 2 Location of all amino acid mutations present in this s

Number
of Samples

LMP-1
Type

T cell epitope

CTAR 3
JAK

binding site

A

313 318 321 322 328 331 334 338 343

B95.8
RefSeq# S G P Q E G Q L G

1 B' N E R S

3 B' E R S

2 B' E R S

1 B95.8

1 B95.8'

3 B95.8'

1 B95.8'

22 C N R S

1 C' N G R S

2 C' N R S

1 C' N R S

1 C' S N R S

10 K' K E R S

11 K K E R S

1 D' P T Q P

Sequences are grouped according to the scheme devised by Sandvej et al. [12], wit
Novel K variant amino acid changes are also labeled.
# Stands for B95.8 reference sequence. * Stands for amino acid deletion.
0.21, 95% CI 0.01-5.35). One prototypical B95.8 se-
quence occurred in an eBL patient. There were five
B95.8 amino acid variants, 3 (12.5%) from healthy
control sequences, and 2 (5.4%) from eBL sequences
(p=0.37, OR 0.40, 95% CI 0.06-2.59). When these
were analyzed together with the prototypical B95.8 se-
quence, no statistically significant difference in frequency
of B95.8 variant was observed between eBL sequences and
healthy controls (p=0.67, OR 0.62, 95% CI 0.11-3.35).
tudy

CTAR 2

mino acid position

344 345 346 347 348 349 350 351 352 354 356 366 372

G G H S H D S G H G D S D

R T

R T

T

N

T

N T

* * * * * * * * * T

* * * * * * * * * T

* * * * * * * * * T H

* * * * * * * * * S T G

* * * * * * * * * T

T

R T

T

h amino acid mutations labeled at sites along LMP-1 protein sequence.
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Figure 3 Frequency of all LMP-1 variants between healthy
control eBL patient samples. Bars represent the frequency of each
LMP-1 type, including amino acid variants, e.g. K+K’. White bars
represent eBL sequences and gray bars represent healthy controls.

a

b

Figure 4 Confirmation of agreement between gel electrophoresis
and sequencing result. Patient BL26 and BL28 contained the
full-length LMP-1 product, while BL27, BL29, and BL30 contained
deletion variants by both electrophoresis and sequencing. Part a is a
sample gel electrophoresis image from a PCR amplification of five
eBL patient LMP-1 sequences. Lane 1 is a 100 base pair ladder,
with 500 base pairs highlighted. Lane 2 is from patient BL26, lane
3 is from BL27, lane 4 is from BL28, lane 5 is from BL29, lane 6 is
from BL30. Lane 7 is a no template PCR control. Part b represents
the sequence traces of the corresponding eBL patient samples
flanking the 30 base pair deletion.
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Presence of the 30 base pair deletion LMP-1 mutant
detected by gel electrophoresis or by sequencing was
compared and 100% concordance was observed between
electrophoresis and sequencing studies in detecting the
LMP-1 deletion (Figure 4, other data not shown). Next
the frequency of the deletion mutant was compared be-
tween eBL cases and healthy controls. The 30 base pair
deletion mutant was present in 17 (45.9%) eBL se-
quences and 10 (41.7%) healthy controls (p=0.80, OR
1.19, 95% CI 0.42-3.36).
No mutations were observed in the TRADD/RIP bind-

ing sequence of CTAR2, which occurs from amino acids
379-385 of LMP-1. Of the 63 sequence reads, 55 pro-
duced clean traces through the end of the LMP1 coding
sequence. The other 8 sequences were amplified with
primers that did not include the last 8 amino acids of
LMP-1, and this portion has been excluded from their
analysis. However in all 55 traces, the TRADD/RIP bind-
ing motif at the C terminal end of CTAR2 was 100%
conserved in all samples.

Novel K variant of LMP-1
A previously uncharacterized LMP-1 variant was ob-
served in both eBL patients and healthy controls. This
variant always differed from the B95.8 sequence at 5
amino acids: G318K, Q322E, Q334R, L338S, and S366T;
and was frequently found with H352R (52.4%). We have
named the novel variant K for Kenya and for the novel
lysine substitution at amino acid 318. The prototypical K
variant was found in 9 (24.3%) eBL sequences and 2
(8.3%) healthy controls (p=0.18, OR 3.54, 95% CI 0.69-
18.07). The atypical K variant containing H352R was
found in 6 (16.2%) eBL sequences and 4 (16.7%) healthy
controls (p=1.00, OR 0.97, 95% CI 0.24-3.87). When the
prototypical K variant was combined with atypical K
variant sequences for analysis there was no difference in
frequency between eBL sequences and controls (p=0.27,
OR 2.05, 95% CI 0.66-6.36).

LMP-1 T cell epitope variants
Duraiswami and colleagues showed that only specific
LMP-1 epitopes are able to elicit interferon-γ production
from T cells [34]. One of these epitopes occurs in
CTAR3, from amino acids 307 to 323. Within this region
it was determined that there were two minimal sequences
of 9 amino acids necessary for recognition by EBV-specific
T cells. The minimal T cell epitope sequences within
CTAR3 were AGNDGGPPQ and PSDSAGNDG. When
the K sequence was mapped onto these epitopes, it was
found that the K variant was mutated at the C terminal
amino acid of both minimal T cell epitopes, creating
sequences AGNDEGPPK and PSDSAGNDE. A dia-
gram of the possible effects of these mutations on
MHC-I loading is shown in Figure 5. The G318K mu-
tation was highly linked to the Q322E mutation, such
that all 22 sequences observed containing G318K also
contained Q322E.



Figure 5 Diagram of minimal T cell epitopes in CTAR3 of wild-type EBV and mutations in K variant LMP-1. Highlighted are how known
peptides fit into MHC-I and possible effects of mutations on MHC processing.
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An amino acid mutation at Q322 in the C terminal of
the T cell epitope was detected in 55 of 61 samples ana-
lyzed. While all K variant sequences contained two amino
acid mutations in the T cell epitope region of CTAR3, all
but two other sequences with mutations in this region
harbored mutations only in Q322. Of the two sequences
with multiple T cell epitope mutations, one was an alter-
nate C variant sequence (BL36), with mutations in both
terminal amino acids, to AGNDGGPSN. The other was a
B variant sequence (C2), and contained the sequence
AGNDNGPPE.

Discussion
The main goals of this study were to determine the gen-
etic variation of the C terminus of LMP-1 in children
residing in western Kenya, whether variation was linked
to eBL versus healthy controls, and what LMP-1 vari-
ation suggests about EBV biology. To address the first
goal of our study, the LMP-1 sequences obtained from
Kenyan study participants were compared to previously
reported sequences from healthy Caucasians [12]. The
major LMP-1 sequences observed in the Kenyan popula-
tion were the C variant and a previously unreported K
variant sequence. We are unaware of any previous stud-
ies describing the characteristic G318K mutation of the
K variant sequence. Other LMP-1 variants observed
included the B, D, and B95.8. No A variant sequences
were observed among this population from western
Kenya, in contrast to the high prevalence observed in
the European population [12]. This general pattern of
EBV variants could suggest historical movement of
EBV among populations [11]. For example, the A
variant virus in the European population may have
arisen independently of mutation in the African set-
ting. Further studies using larger regions of the EBV
genome and sequences from diverse geographical re-
gions are necessary to validate these observations
across the global population.
The second aim of this study was to determine if cer-

tain LMP-1 genotypes were associated with eBL as
compared to healthy controls. None of the previously
characterized LMP-1 variants observed were associated
with eBL, including B, C, D, and B95.8. The novel K
variant LMP-1 was found in 40.5% of eBL sequences
and 25.0% of healthy controls (p=0.27). Larger sample
sizes are needed to confirm whether K variant LMP-1 is
associated with eBL in Kenya. Still undetermined is
whether the K variant sequence is associated with eBL in
other areas endemic for Burkitt lymphoma, which would
support an immune evasive phenotype of K variant LMP-
1, or if it arose independently in the Kenyan population.
The selection of EBV genetic variants in cancer agrees
with previous work suggesting that EBV-associated
Hodgkin’s disease selects for certain LMP-1 variants,
which differ from the distribution of variants in the gen-
eral population [35]. Similarly in eBL, previous work on
EBNA-1 has suggested that certain EBNA-1 variants are
more oncogenic than others [27]. Although some research
has suggested the selection of specific EBNA-1 genetic
variants in lymphomas, other work has suggested that
specific EBNA-1 variants are associated only with geo-
graphic areas and not with eBL [28].
T cell control of EBV is critical for the development of

protective immunity [40]. It was recently confirmed in a
mouse model that T cell control of LMP-1 is necessary
for inhibiting lymphomagenesis [41]. It has also been de-
termined that only specific LMP-1 epitopes generate
interferon-γ responses from T cells [34]. The possible
link to T cell immune evasion in K variant LMP-1 de-
rives from the mutated anchor residues in the C ter-
minal binding groove of both of the two known minimal
T cell recognition sequences of CTAR3 in the K variant.
In addition to their specific location within the anchor
position, these mutations resulted in changes in the po-
larity of the amino acid. The first mutation was from the
small and uncharged glycine at position 318 to larger
and positively charged lysine. The second mutation at
amino acid 322 was from uncharged glutamine to nega-
tively charged glutamic acid. Mutations in the C ter-
minal binding groove affect the ability of peptides to be
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loaded onto appropriate MHC class I molecules [42,43],
so these mutations may play an important role in MHC
loading, decreasing the ability of LMP-1 derived peptides
to be presented at the cell surface. Our study did not
evaluate the MHC specificity of these variants, but the
Kenyan population has very high MHC heterogeneity
[44], and it is possible that people with certain MHC
variants are unable to present these novel LMP-1 pep-
tides. Functional studies are necessary to characterize
the MHC specificity of the novel LMP-1 variants identi-
fied in this study.
Given the immune evasion hypothesis it is interesting

that we did not observe a difference in the frequency of
K type LMP-1 between eBL patients and controls. There
are multiple possible explanations for this. One possiblity
is that the sample size of the current study was too small
to detect a difference between these populations. Sampling
a larger population was unfortunately not possible for this
study. Another possibility is that LMP-1 variants of eBL
patients and controls differ in critical T cell epitopes out-
side of the region sequenced here. It is known that LMP-1
T cell epitopes exist outside of CTAR2 and that amino
acid variation leads to functional consequences [34], so
this remains a possibility that should be examined by fu-
ture studies. Another possibility is that K type LMP-1 in
healthy individuals clusters spatially with high-risk eBL
clusters [37,45]. Spatial data were not recorded in the
current study, possibly altering the frequency of K type
LMP-1 that would be observed in high versus low risk
healthy controls. We believe that future studies including
the entire coding region of LMP-1 with larger sample sizes
will help resolve this apparent discrepancy.
A major limitation of this study was that LMP-1 was

sequenced from DNA extracted from peripheral blood
lymphocytes rather than eBL tumor tissue. We were un-
able to obtain biopsy tissue for these studies. However
previous work showed that EBV isolated from eBL bi-
opsy samples contained the same EBNA-1 sequence as
EBV obtained from peripheral blood of the same individ-
ual, indicating that tumor and peripheral blood EBV iso-
lates were genetically identical [28].

Conclusions
The C-terminus of LMP-1 was sequenced from periph-
eral blood of eBL patients and healthy controls in west-
ern Kenya. The Kenyan population demonstrated an
altered distribution of LMP-1 variants compared to pre-
vious studies in Europe. A previously undocumented
LMP-1 variant was also observed, called K for Kenya
and its novel lysine (K) substitution. The K variant LMP-
1 is characterized by amino acid mutations in the C ter-
minal anchor residues of both minimal T cell epitopes of
LMP-1 CTAR-3, which may lead to functional differ-
ences in MHC loading. The K variant was found at
increased frequency in eBL patients compared to healthy
controls. Since this variant has not been described in
eBL samples previously, larger patient populations will
need to be studied to confirm the linkage between K
variant and eBL development. Future studies are also
needed to confirm the functional role of K variant muta-
tions on MHC loading and T cell immune evasion.

Methods
Samples
Endemic BL patients were enrolled when presenting to
the New Nyanza Provincial General Hospital in Kisumu,
Kenya and healthy controls were enrolled from a nearby
malaria holoendemic area as previously described, [46].
Additional controls (C17-C24) were included from a
subset of samples of a separate study of healthy children
living in a nearby area of Kisumu, Kenya [38]. After
obtaining informed consent, approximately five milliliters
of peripheral blood was drawn from children with eBL
and healthy controls. Whole blood was frozen at -80°C
until use. From these frozen samples, 38 eBL patients and
22 healthy controls were randomly selected for sequen-
cing. After beginning the study it was pathologically deter-
mined that 2 eBL patients (BL16 and BL39) had non-eBL
tumors and their sequencing data were excluded from
analysis.

Ethical approval
Ethical approval was obtained from the Institutional
Review Boards at The State University of New York
Upstate Medical University (Rochford), The University
of Massachusetts Medical School (Moormann), and
the Ethical Review Committee at the Kenya Medical
Research Institute, Nairobi, Kenya. Parents of minor
study participants provided individual, written in-
formed consent in accordance with the Declaration of
Helsinki.

DNA extraction
DNA was extracted from whole blood using the QIAamp
DNA Mini Kit (Qiagen, Germantown, MD, USA) according
to the manufacturer’s instructions.

PCR amplification
The LMP-1 segment spanning the 3′ T cell epitope and
JAK binding site of CTAR3 as well as CTAR2 was ampli-
fied using the following primers of sequence NC_007
605.1: 5′-GCGACTCTGCTGGAAATGAT-3′ (167912-31)
and 5′-GACATGGTAATGCCTAGAAG-3′ (167672-91).
For control samples C17 through C24, primers were 5′-
CCGTGGGGGTCGTCATCATC-3′ (167730-49) and 5′-
CTCCCGCACCCTCAACAAGC-3′ (168262-43). Primers
were acquired from Integrated DNA Technologies
(Coralville, IA, USA). Each PCR reaction mixture contained
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2.5 μl 10× PCR Buffer, 2.5 μl dNTP mixture, 1.25 μl
RedTaq Polymerase (Sigma, Saint Louis, MO, USA),
2.5 μl LMP-1 forward and reverse primers at 3 uM,
and 11.75 μl molecular grade water (Mediatech, Herndon,
VA, USA). The amplification procedure consisted of a 95°C
denaturation step for 10 minutes, followed by 50 cycles of
95°C for 30 seconds, 58°C for 30 seconds, and 72°C for
45 seconds. Reactions were carried out in an iCycler
thermocycler (BioRad, Hercules, CA, USA). Positive control
DNA was amplified from the EBV positive cell line B95.8.
PCR product size was confirmed by gel electrophoresis
using a 2% AquaPor agarose (National Diagnostics, Atlanta,
GA, USA) gel containing 5% ethidium bromide (Sigma,
Saint Louis, MO, USA) at 10mg/ml.

Cloning
After confirming the appropriate product length, PCR
products were cloned using the TOPO TA pCR 2.1 clon-
ing kit with TOP10 chemically competent Escherichia coli
according to the manufacturer’s instructions (Invitrogen,
Carlsbad, CA, USA). Five clones per sample were selected
and run on an agarose gel to visualize the presence of the
LMP-1 product and the size of the amplicon.
Plasmid DNA was purified from E. coli using a Qiagen

Plasmid Purification Mini Kit (Germantown, MD, USA)
according to the manufacturer’s instructions and eluted
in HPLC grade water. To confirm the presence of the
LMP-1 insert, plasmid DNA was digested with EcoR1
(New England Biolabs, Ipswitch, MA, USA) according to
the manufacturer’s instructions. A total of 5 clones per
sample were digested. Digestion products were run on a
2% agarose gel as described above to confirm the pres-
ence of LMP-1 insert DNA.

Sequence analysis
Plasmids containing cloned LMP-1 PCR products were
sent to Genewiz (South Plainfield, NJ, USA) for sequencing
using M13R universal primers. Sequences were aligned
using Unipro UGENE software (Novosibirsk, Russia).

Statistical analysis
Fisher’s exact test with odds ratios (OR), and 95% confi-
dence intervals (95% CI) in GraphPad Prism, version 5.0b
(La Jolla, CA, USA) were used to compare the frequency of
LMP-1 variants between eBL patients and healthy controls.
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