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Abstract 

Background Numerous studies have shown that Schistosoma japonicum infection correlates with an increased risk 
of liver hepatocellular carcinoma (LIHC). However, data regarding the role of this infection in LIHC oncogenesis are 
scarce. This study aimed to investigate the potential mechanisms of hepatocarcinogenesis associated with Schisto-
soma japonicum infection.

Methods By examining chronic liver disease as a mediator, we identified the genes contributing to Schistosoma 
japonicum infection and LIHC. We selected 15 key differentially expressed genes (DEGs) using weighted gene 
co-expression network analysis (WGCNA) and random survival forest models. Consensus clustering revealed two 
subgroups with distinct prognoses. Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression 
identified six prognostic DEGs, forming an Schistosoma japonicum infection-associated signature for strong prognosis 
prediction. This signature, which is an independent LIHC risk factor, was significantly correlated with clinical variables. 
Four DEGs, including BMI1, were selected based on their protein expression levels in cancerous and normal tissues. 
We confirmed BMI1’s role in LIHC using Schistosoma japonicum-infected mouse models and molecular experiments.

Results We identified a series of DEGs that mediate schistosomiasis, the parasitic disease caused by Schistosoma 
japonicum infection, and hepatocarcinogenesis, and constructed a suitable prognostic model. We analyzed the mech-
anisms by which these DEGs regulate disease and present the differences in prognosis between the different geno-
types. Finally, we verified our findings using molecular biology experiments.

Conclusion Bioinformatics and molecular biology analyses confirmed a relationship between schistosomiasis 
and liver hepatocellular cancer. Furthermore, we validated the role of a potential oncoprotein factor that may be 
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Background
Liver cancer is the fifth most commonly diagnosed can-
cer and the most frequent cause of cancer-related deaths 
worldwide [3, 34]; it is the second most common can-
cer in China [10]. Despite the increasing incidence of 
liver cancer, the limited availability of treatment options 
remains a concern. In addition to physical methods, such 
as radiation, transplantation, and surgery, only a few 
approved medical therapy methods have been proposed, 
including a range of costly failures and a very small num-
ber of drug candidates [16]. Owing to the high heteroge-
neity of liver hepatocellular carcinoma (LIHC) [31], it is 
widely accepted that future medical treatments should 
focus on individualized care. However, implementing 
personalized care relies on our understanding of the risk 
factors that induce hepatocarcinogenesis and advanced 
detection of oncogenic alterations.

Liver cancer is typically caused by an underlying dis-
ease; however, the causes of these diseases vary sig-
nificantly worldwide [16]. Among LIHC risk factors, 
large-scale transmission of schistosomiasis should not 
be overlooked, as it may have a lasting negative impact. 
Notably, schistosomiasis differs from bacterial and viral 
infections in that it is usually not an acute disease; rather, 
it is a chronic disease that gradually deteriorates health, 
leading to high morbidity and mortality [2]. These char-
acteristics align with those of chronic diseases that induce 
primary liver cancer, and the ability of schistosomiasis to 
trigger LIHC has been widely recognized, both epidemi-
ologically and pathologically. Epidemiological evidence 
from China and Japan supports Schistosoma japonicum 
infection, a major schistosomiasis-causing parasite, as an 
LIHC risk factor [23]. Kojiro et  al. reported that autop-
sies revealed significantly higher rates of hepatocellular 
carcinoma in patients with chronic schistosomiasis than 
in healthy individuals [26]. In a series of studies, Inaba 
et  al. suggested that a combination of schistosomiasis 
and other factors, such as hepatitis B virus infection and 
alcohol abuse, may contribute to LIHC. Filgueira et  al. 
found that infection with Schistosoma mansoni, another 
schistosomiasis-causing parasite, can promote LIHC 
development as a single factor, even in the absence of 
other risk factors [15]. Although many aspects of LIHC 
development induced by Schistosoma japonicum infec-
tion remain unclear, several high-quality studies have 
been conducted. El-Tonsy et al. published a groundbreak-
ing study confirming the role of schistosomiasis infection 

in promoting tumor growth [13]. By exploring schisto-
somiasis mechanisms at the tissue level, infection with 
Schistosoma was found to reduce the ability of the liver to 
process carcinogens [7, 22]. Roderfeld et al. [42] revealed 
that substances emanating from Schistosoma eggs, when 
ensnared within the liver tissue, trigger a lasting activa-
tion of proto-oncogenes linked to LIHC, such as C-jun, 
along with associated transcription factors, such as 
STAT3.

In recent years, bioinformatics has been considered 
an effective means to assess the relationship between 
specific factors and tumors [19, 20, 33]. In this study, we 
used the weighted gene co-expression network analysis 
(WGCNA) algorithm to systematically analyze the func-
tions of differentially expressed genes (DEGs) caused 
by Schistosoma japonicum infection that are believed to 
be associated with LIHC. We screened the most repre-
sentative DEGs using random survival forest models and 
the Least Absolute Shrinkage and Selection Operator 
(LASSO) regression algorithm and classified them using 
the non-negative matrix factorization (NMF) algorithm 
to assess differences in prognosis, immune cells, and 
tumor stromal scores across cluster subtypes. Subse-
quently, a prognostic signature of Schistosoma japonicum 
infection-associated LIHC was constructed and vali-
dated. The risk signature based on DEGs demonstrated 
a strong potential for survival prediction in Schistosoma 
japonicum infection-associated LIHC. Moreover, a 
nomogram integrating risk signature and clinical char-
acteristics accurately predicted the prognosis of Schisto-
soma japonicum infection-associated LIHC patients. In 
addition, we assessed the potential response to immu-
notherapy and chemotherapy in distinct patient cohorts 
stratified based on the signature associated with Schis-
tosoma japonicum infection. Furthermore, we created a 
mouse model of Schistosoma japonicum infection and 
examined the expression of relevant genes in liver sam-
ples using immunohistochemistry. A series of oncologi-
cal experiments confirmed the important roles of DEGs 
in LIHC.

Methods
Criteria for selection and data acquisition
Gene expression data for both schistosomiasis-infected 
and healthy samples were obtained from the GEO-
GSE61376 database (http:// www. ncbi. nlm. nih. gov/ geo). 
Furthermore, we acquired RNA sequencing data and the 

associated with infection and carcinogenesis. These findings enhance our understanding of Schistosoma japonicum 
infection’s role in LIHC carcinogenesis.
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corresponding clinical datasets for individuals diagnosed 
with LIHC from TCGA (https:// portal. gdc. cancer. gov/) 
and ICGC (https:// dcc. icgc. org/). The detailed informa-
tion was presented in Tables 1 and 2. Besides, Additional 
files 7, 8: supplementary table 1 and 2 were presented to 
describe the basic clinicopathological information from 
different databases.

Construction of a gene co‑expression network
We used the R-based WGCNA package (https:// horva 
th. genet ics. ucla. edu/ html/ Coexp ressi onNet work/ Rpack 
ages/ WGCNA/) to construct the gene coexpression net-
work. We first selected the top 25% of genes with the 
highest variance from GSE61376 for network construc-
tion. Using the pickSoftThreshold function and dynamic 
tree-cutting algorithm of the WGCNA package, we cal-
culated p-values and partitioned different modules. The 
WGCNA optimal soft threshold was calculated using 
the pickSoftThreshold function. The soft threshold with 
a signed  R2 > 0.9 (first time) was selected as the optimal 
soft threshold. The result was stored in the powerEs-
timate slot of the pickSoftThreshold function and was 
automatically chosen. The correlation between module 
feature genes and clinical features was analyzed using 
Pearson’s correlation coefficient. The correlation between 
gene expression and clinical information was assessed 
using the gene significance (GS). Key modules were iden-
tified by recognizing the GS of all the genes within each 
module.

Random survival forest models
Data related to LIHC from TCGA were extracted for 
constructing random survival forest models using the 
rfsrc function in the “random forest SRC” package. The 
random survival forest technique trains a considerable 
number of surviving trees and combines predictions 
from these individual trees using a voting mechanism to 
produce the final results. By default, the model created 
1000 binary survival trees. As the number of surviving 
trees continued to increase, the error rate curve stabi-
lized at a certain point, suggesting that the chosen num-
ber of trees was suitable.

Identifying molecular subtypes using NMF
Tumor molecular classification, proposed by the National 
Cancer Institute, has shifted from morphology-based to 
molecular-based tumor classification. This approach rec-
ognizes tumors as a class of disease, acknowledging their 
high heterogeneity in histopathology and molecular biol-
ogy. It utilizes gene clusters to describe tumor character-
istics because of the complex nature of tumors involving 
multiple genes. This shift aids in precise diagnosis, prog-
nosis stratification, treatment guidance, and drug devel-
opment. Technological advancements in molecular 
biology support this transition and facilitate the develop-
ment of individualized targeted therapies. NMF cluster-
ing was used to group LIHC samples. To select various 
numerical values for the NMF, we referred to previous 
studies [32, 51]. The NMF algorithm is typically used to 
determine the number of categories. Its basic principle 

Table 1 Statistical analysis and the Chi-square test of clinical-
pathological information in high and low risk groups of TCGA 

Covariates Type Total High Low p Value

Grade G1 55 (14.86%) 20 (10.81%) 35 (18.92%) 0

Grade G2 177 (47.84%) 70 (37.84%) 107 (57.84%)

Grade G3 121 (32.7%) 83 (44.86%) 38 (20.54%)

Grade G4 12 (3.24%) 10 (5.41%) 2 (1.08%)

Grade Unknow 5 (1.35%) 2 (1.08%) 3 (1.62%)

Stage Stage I 171 (46.22%) 75 (40.54%) 96 (51.89%) 0.0332

Stage Stage II 85 (22.97%) 47 (25.41%) 38 (20.54%)

Stage Stage III 85 (22.97%) 51 (27.57%) 34 (18.38%)

Stage Stage IV 5 (1.35%) 1 (0.54%) 4 (2.16%)

Stage Unknow 24 (6.49%) 11 (5.95%) 13 (7.03%)

M M0 266 (71.89%) 137 (74.05%) 129 (69.73%) 0.5832

M M1 4 (1.08%) 1 (0.54%) 3 (1.62%)

M Unknow 100 (27.03%) 47 (25.41%) 53 (28.65%)

N N0 252 (68.11%) 130 (70.27%) 122 (65.95%) 0.6704

N N1 4 (1.08%) 3 (1.62%) 1 (0.54%)

N Unknow 114 (30.81%) 52 (28.11%) 62 (33.51%)

T T1 181 (48.92%) 79 (42.7%) 102 (55.14%) 0.0591

T T2 93 (25.14%) 53 (28.65%) 40 (21.62%)

T T3 80 (21.62%) 44 (23.78%) 36 (19.46%)

T T4 13 (3.51%) 9 (4.86%) 4 (2.16%)

T Unknow 3 (0.81%) 0 (0%) 3 (1.62%)

Age  <  = 61 192 (51.89%) 96 (51.89%) 96 (51.89%) 1

Age  > 61 178 (48.11%) 89 (48.11%) 89 (48.11%)

Gender Female 121 (32.7%) 58 (31.35%) 63 (34.05%) 0.6576

Gender Male 249 (67.3%) 127 (68.65%) 122 (65.95%)

Table 2 Statistical analysis and the Chi-square test of clinical-
pathological information in high and low risk groups of ICGC 

Covariates Type Total High Low P value

Gender Female 61 (26.41%) 36 (31.3%) 25 (21.55%) 0.1255

Gender Male 170 (73.59%) 79 (68.7%) 91 (78.45%)

Stage 1 36 (15.58%) 14 (12.17%) 22 (18.97%) 0.3173

Stage 2 105 (45.45%) 51 (44.35%) 54 (46.55%)

Stage 3 71 (30.74%) 38 (33.04%) 33 (28.45%)

Stage 4 19 (8.23%) 12 (10.43%) 7 (6.03%)

Age  <  = 69 124 (53.68%) 60 (52.17%) 64 (55.17%) 0.7452

Age  > 69 107 (46.32%) 55 (47.83%) 52 (44.83%)

https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
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is to decompose the data matrix into the product of two 
non-negative matrices, where one matrix represents the 
importance weights of features and the other represents 
the expression of samples on these features. The number 
of categories that capture the data structure most effec-
tively can be determined by adjusting the dimensions of 
the decomposed matrices. We first used different num-
bers of categories for NMF decomposition and selected 
the optimal number of categories by comparing the 
goodness-of-fit indicators of the models. Furthermore, 
to facilitate the observation of the optimal classification, 
we visualized the decomposed matrices using heat maps. 
The criterion for determining the optimal rank value 
was the first point at which the maximum change in 
the cophenetic value occurred as K varied. In the above 
results, the cophenetic value showed the greatest change 
at ranks 2–3, and so the optimal rank value was chosen 
as 2.

Construction and validation of the prognostic signature
We used a cohort from TCGA as the training set and 
an ICGC cohort for external validation. Univariate Cox 
proportional hazard regression analysis and LASSO fil-
tration were used to identify prognosis-related genes 
(p < 0.05), implemented via the "glmnet" package. The 
glmnet package adapts to generalized linear and simi-
lar models through penalized maximum likelihood. The 
parameter controlling the LASSO regression or elastic 
net regression on a logarithmic scale is the regulariza-
tion parameter lambda. When mentioning the LASSO 
regression, one cannot ignore the ridge regression and 
Elastic Net. An alpha of 0 represents ridge regression 
without variable selection. Alpha = 1 represents a LASSO 
regression with variable selection. Alpha values between 
[0,1] represent Elastic Net regression. Therefore, the 
value of the alpha parameter was set to 1. The multivari-
ate Cox proportional hazards model regarded six genes 
(FAM98A, UBE2E1, NOP56, GHR, TMEM106C, and 
BMI1) as immune-related risk signatures, defined as fol-
lows: risk score = (level of gene a × coefficient a) + (level 
of gene b × coefficient b) + (level of gene c × coefficient 
c) + … + (level of gene n × coefficient n). In our model, the 
risk score reflected the prognosis of patients with LIHC, 
with lower scores indicating a better prognosis. Patients 
were stratified into high- and low-risk groups using the 
median risk score as the cut-off value. We evaluated 
the predictive performance using Kaplan–Meier sur-
vival curves, and statistical significance was determined 
using log-rank p-values, employing the “survival” and 
“survminer” packages. For additional assessments, we 
employed time-dependent receiver operating character-
istic (ROC) curves to measure the predictive capability of 
the signature using the survivalROC package.

Independence validation of the prognostic model
We used both univariate and multivariate Cox regres-
sion analyses to investigate whether the risk score was 
an independent prognostic factor for LIHC in each 
independent cohort (TCGA and ICGC).

Construction and evaluation of the nomogram
A nomogram was established using R package "repglot” 
and assessed by time-dependent ROC curves with the R 
package "pROC,” the Concordance index (C-index), and 
decision curve analysis (DCA). The data were obtained 
from the ICGC-LIRI-JP.

Expression difference and copy number variation (CNV) 
frequency analysis
To investigate the differential expression of FAM98A, 
UBE2E1, NOP56, GHR, TMEM106C, and BMI1 
between normal liver and LIHC tissues, we utilized 
publicly available transcriptomic datasets from TCGA. 
Raw RNA sequencing data were downloaded and pre-
processed using the R package, TCGAbiolinks. Data 
normalization and gene-level quantification were per-
formed using the DESeq2 package. Differential gene 
expression analysis between the normal liver and LIHC 
tissues was conducted using the edgeR package.

To investigate the CNV frequency of these genes, we 
used the cBioPortal database to analyze the CNV data 
for FAM98A, UBE2E1, NOP56, GHR, TMEM106C, 
and BMI1 in LIHC patient samples. CNV data, includ-
ing the number of samples with gene amplification, 
gene deletion, and normal copy number status, were 
obtained from cBioPortal. We calculated the CNV fre-
quency for each gene, represented as the proportion of 
samples with gene amplifications or deletions out of the 
total number of samples.

Immune cell infiltration and tumor microenvironment
The monotonic relationship between the risk scores 
and immune cell infiltration was explored using Spear-
man’s correlation analysis. Immune cell infiltration lev-
els were determined using the TIMER, CIBERSORT, 
XCELL, QUANTISEQ, MCPcounter, EPIC, and CIB-
ERSORT algorithms. High- and low-risk groups were 
analyzed using the Wilcoxon signed-rank test to com-
pare immune cell composition. In addition, we com-
puted tumor microenvironment (TME) scores for the 
entire LIHC cohort using the “ESTIMATE” package. 
Finally, we conducted a Spearman correlation test by 
intersecting transcription gene expression data with 
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stemness scores (based on RNA expression) to further 
explore potential correlations.

Evaluation of chemotherapy and immunotherapy 
sensitivity
We performed differential analysis of chemotherapy sen-
sitivity using the Genomics of Drug Sensitivity database 
(https:// www. cance rrxge ne. org/). Additionally, we pre-
dicted the potential responses to immune checkpoint 
blockade (ICB) using a Tumor Immune Dysfunction and 
Exclusion (TIDE) algorithm.

Functional enrichment analysis
We conducted gene set enrichment analysis (GSEA) of 
DEGs. To understand the functional categories (ontolo-
gies) associated with these DEGs, we utilized Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis.

Immunohistochemical (IHC) staining from HPA
The protein levels of BMI1, FAM98A, NOP56, and 
UBE2E1 in normal liver and LIHC tissues were analyzed 
using the Tissue Atlas and Pathology Atlas sections of 
HPA (http:// www. prote inatl as. org).

Parasite infection
We sourced the Schistosoma japonicum cercariae from 
infected Oncomelania hupensis (snails) provided by the 
Jiangsu Center for Disease Control and Prevention in 
China. Wild-type (WT) C57BL/6 mice were infected via 
percutaneous exposure to an average of 40 ± 5 cercariae; 
uninfected WT mice served as the control group. To 
assess the outcomes of Schistosoma japonicum infection, 
we sacrificed all mice 10 weeks after the initial infection. 
All experimental protocols were approved by the Institu-
tional Animal Care and Use Committee of Anhui Medi-
cal University.

Cell lines and cell culture
Human normal liver cell line (MIHA) and LIHC cell lines 
(HepG2, Hep3B, and Huh-7 cells) were acquired from the 
Center for Excellence in Molecular Cell Science, Shang-
hai, China. All cell lines were initially preserved in liq-
uid nitrogen and subsequently cultured in a humidified 
incubator at 37 °C with 5%  CO2. The culture medium was 
Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco 
BRL, USA), supplemented with 1% antibiotics (100 U/ml 
penicillin and 100  µg/ml streptomycin sulfates, sourced 
from Sigma, USA), and 10% heat-inactivated fetal bovine 
serum (FBS; Gibco, USA).

RNA interference
We designed and synthesized BMI1-siRNA using GeneP-
harma Corporation (Shanghai, China). The sequences 
for the BMI1-siRNA were as follows: 5’-CCG UCU UAA 
UUU UCC AUU G-3. Human LIHC cells (HepG2, Hep3B, 
and Huh-7 cells) in the logarithmic growth phase were 
seeded into 6-well plates, with each well containing a 
cell density of 6 ×  105 cells in antibiotic-free DMEM as 
the culture medium. Transfection was carried out using 
a Lipofectamine™2000 kit. Subsequently, the cells were 
incubated in a humidified incubator at 37°C with 5%  CO2 
for 24 h before being harvested for further analysis.

IHC staining
The dewaxed sections were placed in Xylene I (60 min), 
100% alcohol I (5 min), 100% alcohol II (5 min) 90% alco-
hol (5 min), 80% alcohol (5 min), 70% alcohol (5 min), 
and then pure water (3 min). The slides were then incu-
bated with 3% hydrogen peroxide  (H2O2) for 10 min. The 
antigen retrieval process was then carried out by incu-
bating mouse brain tissue slides in citrate buffer (11.48 g 
citric acid, 16.75 g trisodium citrate and 100 ml ddH2O, 
OH = 6.0) for 30 min (heated in a microwave for 8 min, 
cooled for 2 min, boiled for 2 min, repaired for 5 min, and 
cooled naturally to room temperature). The slides were 
treated with rabbit polyclonal antibodies against BMI1, 
FAM98A, UBE2E1, and NOP56 (diluted 1:100, Abcam, 
UK) overnight after pre-incubation with 0.3%  H2O2 and 
blocked with 5% goat serum. We used 3,3’-diaminoben-
zidine tetrahydrochloride (DBA) staining to visualize the 
results. The slides were then re-stained with hematoxylin 
for 5 min. The immune complexes were observed under a 
microscope after cleaning, drying, becoming transparent, 
and fixing using a gel. Three replicates were performed 
for each experiment.

Flow cytometry assay
Cells were fixed in phosphate-buffered saline (PBS) with 
75% ice-cold ethanol. Afterwards, the fixed cells were 
treated with bovine pancreatic RNase (2 mg/ml, Sigma) 
and propidium iodide (10 mg/ml, Invitrogen), and incu-
bated for 30 min at room temperature while being pro-
tected from light. In the graphical representation, the 
four quadrants represent necrotic, viable, early stage 
apoptotic, and late-stage apoptotic cells. Cell cycle pro-
gression and apoptosis were detected using a flow cytom-
eter (BD Biosciences, NJ, USA).

Transwell assay
Hep3B and HepG2 cells were placed in the top chamber 
of the well in a serum-free medium at a density of 2 ×  106 
cells per well. The lower chamber was filled with 500 l of 

https://www.cancerrxgene.org/
http://www.proteinatlas.org
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culture medium containing 20% FBS. After incubation 
for 2 days in a 5% (v/v)  CO2 incubator at room tempera-
ture, the cells and Matrigel in the top chamber that did 
not invade were removed. Cell fixation and other tech-
niques were performed as described in our previous 
study [9].

Wound healing assay
Cells were seeded at a concentration of 1 ×  106 cells/mm 
in six-well plates and incubated for 24 h, after which 
they reached approximately 70% confluency. To create 
a horizontal scratch, a gentle motion was applied to the 
bottom surface of the adherent cells using a 10 µL auto-
claved pipette tip. The cells were carefully washed twice 
with PBS to remove detached cells. The plates were incu-
bated for 24 h. Finally, the cells were fixed using a metha-
nol solution and stained with crystal violet. We used an 
inverted microscope to observe scratch healing, and cap-
tured and documented images.

CCK8 assay
Cells were seeded in 96-well microplates (Corning, Corn-
ing, NY, USA) at a concentration of 5 ×  103 cells per well 
in 100 L of culture medium. Cells were exposed to dif-
ferent concentrations of Tan-I (0, 1.2, 2.4, 4.8, and 9.6 g/
mL). After 24 h, 10 L of the CCK-8 reagent was added 
to each well and left for an additional 2 h. The experi-
ments were performed in triplicate, and the absorbance 
was measured at 450 nm using a microplate reader (Bio-
Rad, Hercules, CA, USA). Wells without cells were used 
as blanks. Cell proliferation was quantified based on the 
obtained absorbance values.

Statistical analysis
Between-group data were analyzed by one-way analysis 
of variance (ANOVA) using the SPSS software (version 
20.0); p < 0.05 was considered statistically significant. 
GraphPad Prism (version 9.0) was used for image produc-
tion, and data are presented as the mean ± S.D. All other 
statistical analyses were performed using R version 4.0.4 
(Institute for Statistics and Mathematics, Vienna, Aus-
tria; https:// www.r- proje ct. org). Repeat values were aver-
aged, and missing values were removed. The RNA-seq 
data were merged and normalized by using the “limma” 
package. Correlations were determined using Spearman 
correlation analysis. The Wilcoxon test and t-test were 
used to compare clinical variables. Survival status was 
assessed using Cox regression analysis. The ‘survival” and 
“survminer” packages was employed to perform Kaplan–
Meier analyses. Overall survival (OS) was calculated 
using the Kaplan–Meier method and evaluated using the 
log-rank test. Two-tailed p < 0.05 was considered statis-
tically significant. The sensitivity and specificity of the 

model were evaluated using ROC curves employing the 
“survivalROC” package. The heatmaps was created using 
the “pheatmap” package. In addition, we verified the con-
fidence of the model using test datasets and entire data-
sets. Hazard ratios (HRs) and 95% confidence intervals 
(CIs) were used to describe the relative risk.

Results
Identification of DEGs
In the GSE61376 dataset, 29,223 genes were identified. 
Among these, 454 DEGs were filtered using the criteria 
of p < 0.05 and |logFC|≥ 1 when comparing schistosomia-
sis infection samples to normal samples. This set of DEGs 
comprised of 432 upregulated and 22 downregulated 
genes. DEGs were visualized using a volcano plot and a 
mean difference plot (Fig. 1A).

Construction of co‑expression modules by WGCNA
Constructing a WGCNA of schistosomiasis infection 
and chronic liver disease is a powerful approach that 
integrates genomic data to discover potential oncogenic 
molecules that may be hidden among numerous genes. 
Using this approach, we constructed a co-expression net-
work and identified modules within a dataset comprising 
424 samples. To construct the network, we utilized the 
top 25% of the gene expression data and selected a power 
value of 3. The genes altered in schistosomiasis-induced 
chronic liver disease were divided into three modules. 
In the grey module, no co-expression patterns were 
observed. The blue and turquoise modules displayed a 
positive correlation with tumor development. Therefore, 
exploration of the genes in these two modules and their 
prognosis in liver cancer was performed using a random 
forest model (Fig. 1C).

Random forest survival analysis
To further select DEGs with prognostic value from the 
genes positively correlated with tumor development, a 
random forest-based approach was implemented for sur-
vival analysis. Figure  2A shows the association between 
the error rate and number of classification trees. We 
embraced and adopted the concept of WGCNA. Bio-
logical connections conform to this scale-free network 
distribution, known as the power-law distribution. In 
an organism, for a cell, many proteins or RNAs are 
expressed and have different functions. Some play 
extremely important roles, whereas others have minimal 
effects. The advantage of this distribution is that, even if 
some nodes are removed, the network can still function 
normally. Therefore, we used a relatively strict cutoff to 
filter out less important features, avoiding redundant fea-
tures from affecting the final modeling. Ultimately, we 
decided to adopt 0.4 as the relative importance cutoff, 

https://www.r-project.org


Page 7 of 19Sheng et al. Infectious Agents and Cancer           (2024) 19:10  

and 17 genes were identified (Fig.  2B). These 17 DEGs 
not only indicate the occurrence of liver cancer but also 
have the potential to predict and evaluate the prognosis 
of liver cancer.

Identification of disease subtypes using NMF
Using the NMF algorithm, we decomposed molecular 
subtypes based on the 17 genes. We identified two new 
liver cancer subtypes (Additional file 1: Fig. S1A). Patients 
with these subtypes exhibited significant differences in 

survival rates, including OS and disease-free interval 
(DFI). We investigated the reasons for these differences 
in patient survival from a microenvironmental perspec-
tive. The results indicate that patients with subtype C2 
not only have higher immune cell content but also have 
an advantage in endothelial cell content. This suggests 
that the better prognosis of liver cancer patients with 
subtype C2 may be related to better antitumor immune 
function and endothelial homeostasis (Additional file  1: 
Fig. S1B and C).

Fig. 1 DEGs in schistosomiasis-induced cirrhotic liver tissue vs. normal liver tissue and liver cancer-associated schistosomiasis-related genes. 
A Volcano plot and Meandiff plot showing the DEGs between schistosomiasis infection samples and normal samples. B Cluster dendrogram 
of co-expression DEGs. C Heatmap illustrating correlations between modules and traits. Red indicates a positive correlation; blue indicates 
a negative correlation
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Immune and prognostic analysis of cluster subtypes
To assess the composition of immune cells in the dis-
tinct disease subgroups, we used the Wilcoxon test to 
compare the distribution of immune cells within these 
subgroups. Our analysis revealed that the monocytic lin-
eage was more abundant in cluster 1, whereas endothelial 
cells, neutrophils, and natural killer (NK) cells were more 
prevalent in cluster 2 (Fig. 3A–D). Furthermore, the stro-
mal score of cluster 1 was significantly lower than that of 
cluster 2 (Fig. 3E). Moreover, patients in cluster 2 exhib-
ited a longer DFI (p = 0.024; Fig.  3F) and OS (p = 0.002; 
Fig.  3Gg) than patients in cluster 1.Finally, as shown in 
Fig. 3H, cluster 1 had a higher prevalence of the immune 
C1, C2, and C4 subtypes, whereas cluster 2 contained the 
immune C3 subtype.

Prognostic signature construction
Univariate Cox regression analysis identified 15 genes 
with a clear relationship with OS (Fig.  4A), including 
14 prognostic risk factors (hazard ratio [HR] > 1) and 
one prognostic protective factor (HR < 1). Following 

LASSO regression analysis, six genes were incorpo-
rated into our prognostic signature (Fig.  4B, C): risk 
score =  (0.38376 × BMI1) + (0.32374 × FAM98A) + (0.
26462 × TMEM106C) + (0.16348 × NOP56) + (0.0215
3 × UBE2E1) + (− 0.09732 × GHR). We examined the 
relationship between the survival rate and expression 
levels of these six genes. Our analysis revealed that the 
high expression groups of FAM98A, UBE2E1, NOP56, 
TMEM106C, and BMI1 had lower survival rates than 
the low expression groups. In contrast, the high expres-
sion group of the GHR gene exhibited a higher survival 
rate, as shown in Fig. 4D. As shown in Fig. 4E, the high-
risk group in the training set of TCGA had notably 
lower OS than the low-risk group (p = 6.38e−09). The 
AUC for predicting OS at 1, 2, and 3-years were 0.805, 
0.709, and 0.709, respectively (Fig. 4F). Moreover, both 
univariate and multivariate Cox regression analyses 
demonstrated the independent predictive ability of the 
risk score (Fig. 4G, H). These results provide initial evi-
dence supporting the usefulness of classifying patient 
prognosis using risk scores.

Fig. 2 Schistosomiasis-related genes associated with prognosis by random survival forest models. A Error rate and variable importance 
of schistosomiasis-related genes. B Variable relative importance for predictors
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Prognostic signature validation
Patients were categorized into either high- or low-risk 
groups based on a consistent cutoff value, depending 
on the risk score. Consistent with previous research, the 
high-risk group exhibited a significantly lower OS com-
pared with the low-risk group (Fig. 5A). AUvalues for the 
risk score in predicting OS at 1, 2, and 3 years were 0.637, 
0.709, and 0.748, respectively (Fig. 5B). Additionally, both 
univariate and multivariate Cox regression analyses dem-
onstrated that the risk score could independently predict 
the prognosis (Fig.  5C, D).   More detailed information 
about univariate and multivariate Cox regression analy-
ses were presented in Additional files 9, 10: supplemen-
tary table 3 and 4.

In addition, we conducted a meta-analysis of the ICGC 
and TCGA cohorts, which confirmed that the risk score 
was a reliable and independent predictor of OS in the 
patients with LIHC (Fig. 5E, F).

Construction and validation of the integrated nomogram
Next, a nomogram integrating the risk model and clini-
cal features was constructed to more precisely predict the 
prognosis of patients. The constructed nomogram is pre-
sented in Fig. 6A; the risk scores and pathological char-
acteristics were assigned specific scores based on their 
contribution to LIHC prognosis. Regarding the nomo-
gram model diagnosis, the C-index (Fig. 6B) and decision 
curve analysis (Fig.  6C) indicated acceptable accuracy. 
The AUC for assessing the predictive values of the TCGA 
cohort nomogram for 1-, 2-, and 3-year OS were 0.789, 
0.726, and 0.758, respectively (Fig.  6D). Moreover, cali-
bration plots revealed consistent and stable alignment 
between the nomogram-predicted probabilities and 
actual observations for TCGA cohort 1-, 2-, and 3-year 
OS (Fig. 6E). Collectively, these results indicate that the 
constructed nomogram exhibited strong performance in 
predicting prognosis.

Fig. 3 Differentiation analysis of clusters. A–E Differences of the endothelial cells, monocytic lineage, neutrophils, NK cells, and stromal scores 
in two clusters. F Disease free interval in the two clusters. G Overall survival in the two clusters. H Sankey diagram demonstrating distribution 
of immune subtypes between the two clusters



Page 10 of 19Sheng et al. Infectious Agents and Cancer           (2024) 19:10 

Fig. 4 Constructing the LASSO–Cox model. A Forrest plot of prognostic genes. B, C LASSO-penalized Cox analysis conducted to build a prognostic 
model. D Kaplan–Meier survival analysis for six-gene signature, including FAM98A, NOP56, BMI1, GHR, TMEM106C, and UBE2E1. E, F Overall survival 
of patients in TCGA cohort. G, H Univariate and multivariate regression analyses showing the association between risk score and clinicopathological 
characteristics in relation to overall survival in TCGA cohort. Green represents univariate analysis results; red represents multivariate analysis results
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Sensitivity to anticancer drugs between different risk 
groups
To guide clinical decision-making, we utilized risk scores 
to predict the sensitivity of high- and low-risk groups 
to common anticancer drugs, aiming to identify poten-
tial treatments for LIHC. Our findings indicated that the 
IC50 values of 10 drugs (Axitinib, AZD6244, AZD6482, 
BMS.536924, CGP.60474, Cyclopamine, Dasatinib, Doc-
etaxel, Erlotinib, Pazopanib) were elevated in patients 
with higher risk scores. This suggests that lower risk 
scores are associated with increased sensitivity to these 
drugs, as illustrated in Additional file  2: Fig. S2A. Con-
versely, the IC50s of 10 drugs (CGP.082996, doxorubicin, 
epothilone B, gemcitabine, imatinib, and mitomycin. 
C, Paclitaxel, PHA.665752, S. Trityl. L. cysteine, and 
VX.680) were lower in high-risk patients (Additional 
file 2: Fig. S2B).

Expression of six signature genes
The protein expression patterns of the six signature 
genes in LIHC and normal liver tissues were further 

explored using the HPA database. The results are shown 
in Fig. 7A (BMI1), Fig. 7B (FAM98A), Fig. 7C (NOP56), 
and Fig. 7D

(UBE2E1). IHC staining indicated that TMEM106C 
and GHR proteins were not expressed in either LIHC or 
normal tissues. BMI1, FAM98A, and NOP56 exhibited 
moderate expression in LIHC tissues, but low expres-
sion in normal liver tissues. Additionally, the protein 
UBE2E1 was not expressed in normal liver tissues but 
was moderately expressed in LIHC tissues.

Expression and CNV frequency of the six signature genes
Next, we analyzed the expression patterns of the six 
signature genes using data from TCGA. There were 
significant differences in the expression levels of the 
six genes between tumor and normal tissues (p < 0.001; 
Fig.  7E), with five genes showing significant upregula-
tion and one gene exhibiting significant downregu-
lation. The frequency of copy number increase was 
higher than that of copy number loss (Fig. 7F).

Fig. 5 Prognostic value of the model. A, B Kaplan–Meier survival analysis and time-dependent ROC analysis to predict the overall survival 
of patients in the ICGC cohort. These predictions were based on the risk score. C, D Univariate and multivariate regression analyses of the ICGC 
cohort to examine the association between risk score and clinicopathological characteristics in terms of overall survival. Green represents univariate 
analysis; red represents multivariate analysis. E, F Forrest plots of TCGA and ICGC cohorts based on univariate and multivariate Cox analyses
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Fig. 6 A Nomogram constructed on the basis of stage and risk score. B C-indices for risk score and clinicopathological characteristics. C 
Prognostic signature decision curve analysis for risk score and clinicopathological characteristics. D Time-dependent ROC curves for the sensitivity 
and specificity of the prognosis assessment for the whole cohort. E Calibration plots of overall survival (OS) at 1, 2, and 3 years
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Fig. 7 A–D Protein expression of BMI1, FAM98A, NOP56, and UBE2E1 in LIHC tissues and normal liver tissues. E Gene expression of six signature 
genes in LIHC tissues and normal liver tissues. F Copy number variation of six signature genes. G, H Enriched GO and KEGG pathways associated 
with DEGs of high risk-patients predicted by GSEA analysis. I, J Enriched GO and KEGG pathways associated with DEGs of low-risk patients predicted 
by GSEA analysis
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GSEA
KEGG pathway and GO enrichment analyses of the 
high- and low-risk groups (Fig.  7G–J) provided valu-
able insights into the potential molecular mechanisms 
underlying LIHC and offer promising avenues for 
future research.

Correlation between immune cell infiltration, tumor 
stemness, and risk score
We explored the relationship between risk score and 
immune cell infiltration, revealing several noteworthy 
correlations. First, we found that the risk score exhib-
ited a negative association with the stromal score, 
indicating that higher risk scores were associated 
with a reduced presence of intratumorally infiltrated 
stromal cells (Additional file  3: Fig. S3A). Moreover, 
the risk score was positively correlated with various 
immune cell types, including memory B cells, plasma 
B cells, M0 macrophages, M1 macrophages, M2 mac-
rophages, myeloid dendritic cells, resting NK cells, T 
cell CD4 + memory T cells, follicular helper T cells, 
and regulatory T cells (Tregs). Conversely, there was 
a negative correlation with endothelial cells (Addi-
tional file 3: Fig. S3B). Furthermore, through Pearson’s 
correlation analysis, we identified a positive correla-
tion between the risk score and RNA stemness score 
(RNAss; R = 0.3, p = 4.1e−09; Additional file  3: Fig. 
S3C), indicating that higher risk scores correspond to 
an increased presence of tumor stem cells.

Benefits of ICI therapy in different risk groups
TIDE were used to analyze immune checkpoint inhibi-
tor (ICI) therapy. High-risk patients exhibited lower 
TIDE scores, indicating that they might derive more sig-
nificant benefits from ICI therapy (Additional file 3: Fig. 
S3D).  Besides, supplementary analyses of ICI treatment 
response for different key genes were presented in Addi-
tional file 6: Figure S6.

Expression of four DEGs in Schistosoma japonicum infected 
mice and LIHC cells
Expression levels of BMI1, FAM98A, UBE2E1, and 
NOP56 were measured in Schistosoma japonicum-
infected mice and LIHC cells. IHC results showed that 
the expression levels of BMI1, FAM98A, UBE2E1, and 
NOP56 were elevated in Schistosoma japonicum-infected 
mice compared with those in wild-type mice (Fig.  8A). 
The expression levels in LIHC cells (HepG2, Huh-7, 
and Hep3B cells) and normal hepatocytes (MIHA cells) 
detected by quantitative real-time polymerase chain 
reaction (PCR) were the same as those detected by IHC 
(Fig. 8B).

BMI1 inhibits proliferation and induces apoptosis of LIHC 
Cells
Based on previous studies, BMI1 exhibits the most sig-
nificant oncogenic effect among the four DEGs. In addi-
tion, we explored their biological functions. BMI1 was 
knocked down in HepG2 and Huh-7 cells by transfecting 
BMI1 siRNA into LIHC cells. The CCK-8 assay was used 
to investigate the effects of BMI1 on LIHC proliferation 

Fig. 8 Expression of DEGS between normal tissues and LIHC tissues. A Expression levels of DEGs in schistosomiasis infection tissues, which are 
upregulated compared with wild-type tissues. B Expression levels of DEGs in LIHC cell lines, which are upregulated compared with the MIHA
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in BMI1 knockdown cells. As shown in Fig. 8A, B, BMI1 
knockdown inhibited the growth of LIHC cells. Addi-
tionally, flow cytometry analysis revealed that LIHC 
cells with low BMI1 expression exhibited a larger G0/G1 
population with arrest in S and G2/M phases (Additional 
file  4: Fig. S4A). Moreover, flow cytometry results indi-
cated that BMI1 inhibited apoptosis in LIHC cells (Addi-
tional file 4: Fig. S4D).

To further investigate the potential role of BMI1 in reg-
ulating the invasion and migration abilities of LIHC cells, 
we conducted transwell (Additional file 5: Fig. S5A) and 
wound healing (Additional file  5: Fig. S5B) experiments 
after BMI1 knockdown. Invasion and migration were 
inhibited in BMI1 low expression cells.

In summary, our findings suggest that BMI1 plays a 
pivotal role in promoting the proliferation and cell cycle 
progression of LIHC cells, suppressing apoptosis and 
enhancing their invasion and migration capabilities.

Discussion
The relationship between parasites and tumors has long 
been of research interest in the field of immune infec-
tions. Exploring the connection between schistosomia-
sis and liver hepatocellular carcinoma (LIHC) has posed 
challenges. Following Japan’s announcement of complete 
schistosomiasis elimination, China is committed to erad-
icating the disease by 2030. The prevalence and inten-
sity of Schistosoma japonicum infections in China are 
extremely low [18]. In 2019, approximately 30,170 people 
across China suffered from the disease, with only 5 new 
cases detected [50]. Although China has made significant 
progress in the prevention and control of schistosomia-
sis, Schistosoma japonicum remains a substantial threat 
to human health. [11, 47]. There is growing concern that 
the national control program may not achieve its ultimate 
goal, which is the complete elimination of the disease 
from China. It is also worth noting that schistosomiasis 
control efforts could be scaled back prematurely because 
of the mistaken belief that the disease is fully under con-
trol and no longer poses a significant risk to the public 
[45]. Even if China successfully eliminated schistosomia-
sis infection entirely, schistosomiasis patients reaching 
zero would not put an end to China’s schistosomiasis 
control work. Therefore, it is insufficient to simply elimi-
nate schistosomiasis. Moreover, the long-term impacts 
of schistosomiasis on the host need to be understood. 
Given the widespread history of schistosomiasis, the risk 
of overlooking the carcinogenic potential of schistosomi-
asis history is substantial. In this study, we investigated 
the roles of Schistosoma japonicum infection-associated 
genes in hepatocarcinogenesis.

Owing to the lack of a database that directly links Schis-
tosoma japonicum infection to liver cancer, we proposed 

a novel approach. Liver cancer is the terminal stage of 
liver fibrosis, cirrhosis, and other chronic liver diseases. 
Therefore, we selected chronic liver disease as the bridge 
between schistosomiasis and liver cancer. First, we used 
the GEO database to identify DEGs between the livers of 
schistosomiasis-infected individuals and healthy livers. 
After removing the duplicates, 442 genes were identified. 
Then, 230 DEGs, which were clustered by the WGCNA 
algorithm using TCGA data and believed to be involved 
in LIHC development, were divided into turquoise and 
blue modules. The DEGs were assessed using random for-
est survival analysis and evaluated for prognostic impor-
tance. Among them, 17 DEGs with a gene scores of > 0.4 
were considered representative. After eliminating 2 DEGs 
not shared between the ICGC and TCGA databases, 15 
DEGs were divided into two subtypes by NMF analy-
sis. We compared the differences in infiltrating immune 
cells, immune subtypes, tumor stromal scores, and sur-
vival between the two subtypes. The LASSO regression 
algorithm was used to select the 6 most representative 
DEGs from the 15 DEGs. Using TCGA and ICGC data 
as the training and test sets, respectively, we constructed 
a robust and feasible prediction model. Additionally, we 
established a nomogram based on staging characteristics 
and risk scores and employed calibration curves, receiver 
operating characteristic (ROC) curves, time-dependent 
C-index, and DCA to verify the accuracy of the model. 
Additionally, we considered drug sensitivity in patients 
with different risk scores for conventional chemotherapy 
and emerging immunotherapies. Owing to the avail-
ability of only four of the six genes in the HPA database, 
we further analyzed only four DEGs—BMI1, UBE2E1, 
FAM98A, and NOP56—in cancerous and normal tissues. 
Gene expression and copy number variations (CNV) can 
provide guidance for subsequent clinical immunotherapy. 
Furthermore, we performed GO and KEGG analyses of 
high- and low-risk groups to explore their enrichment 
pathways, aiding further investigation of potential molec-
ular mechanisms. Finally, we used multiple algorithms to 
examine the extent of infiltration of various immune cells 
in different subgroups, and evaluated and analyzed the 
tumor microenvironment and stemness.

The transition from schistosome infection to liver can-
cer is a multistep process that involves various patho-
logical and immune reactions and may progress through 
multiple clinical stages. The most common complication 
after infection is liver fibrosis, which has been exten-
sively studied. However, the progression to advanced 
stages of the disease, whether it is a linear development 
from persistent liver fibrosis to cirrhosis and eventually 
liver cancer, or a network-like regulation where schisto-
some infection directly induces the occurrence of liver 
cancer, remains uncertain. Previously, the relationship 
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was confirmed to be multidisciplinary and multilevel; 
however, no unified conclusion has been reached. This 
is because schistosomiasis infection and various liver 
diseases are long-term conditions that are accompa-
nied by various interfering pathogenic factors, and cur-
rent research methods suffer from specific errors. From 
the most general perspective, epidemiological evidence 
broadly demonstrates an increased incidence of liver 
cancer in patients with schistosomiasis infection [23, 
26]. However, this does not exclude the presence of other 
pathogenic factors that often accompany schistosomiasis 
infection. Some scholars believe that the increased inci-
dence of liver cancer caused by schistosomiasis infection 
is due to a combination of other factors, such as hepatitis 
B virus infection and alcohol abuse. However, Filgueira 
et al. pointed out that Mansoni schistosomiasis can inde-
pendently promote liver cancer development even in the 
absence of other risk factors [15]. Thus, epidemiological 
studies that do not involve the molecular mechanisms 
cannot answer these questions. El-Tonsy et al. used vari-
ous mouse models and compared intergroup tumor inci-
dence and growth to demonstrate that schistosomiasis 
infection promotes the occurrence and development of 
liver cancer [13]. This greatly advanced research in the 
field, leaving only the exploration of the mechanisms, 
which requires a step-by-step progression, starting from 
observations at the tissue level, followed by the investiga-
tion of intricate molecular regulation within cells. At the 
tissue level, a study on the oncogenic mechanism of schis-
tosomiasis found that schistosomiasis infection reduces 
the ability of the liver to detoxify carcinogens. Interest-
ingly, some mutagens have a planar polycyclic aromatic 
structure that can tightly bind to heme-like deposits 
formed in the infected liver. These findings suggest that 
certain carcinogens may be retained longer in infected 
animals than in uninfected animals, thereby increasing 
the exposure of animals to carcinogens, leading to the 
occurrence of liver cancer [7, 22]. With the rapid devel-
opment of molecular biology, in-depth research on the 
oncogenic mechanisms of schistosomiasis is becom-
ing increasingly important. Roderfeld et al. showed that 
the substances released by liver tissue-captured schisto-
some eggs permanently activated oncogenes related to 
liver cell carcinoma, such as c-Jun and related transcrip-
tion factors (STAT3) [42]. However, these studies began 
with biomarkers and failed to explain the oncogenicity of 
schistosomiasis through a complete pathway. Therefore, 
the specific upstream molecular changes caused by schis-
tosomiasis need to be elucidated.

In tracing the causes of liver cancer, it is difficult to 
confirm changes in specific molecular targets caused by 
schistosomiasis infection only through changes in some 
recognized oncogenes, making individualized diagnosis 

and treatment difficult to achieve. This study builds on 
the pioneering results of previous studies, focusing on 
further exploring multiple targets (suspected molecules) 
at a deeper level. We propose that before the recog-
nized oncogenic pathways are activated, four key DEGs 
(BMI1, NOP56, UBE2E1, and FAM98A) are aberrantly 
expressed, revealing the different prognoses of patients 
with liver cancer. NOP56, UME2E1, and FAM98A play 
important roles in the life cycle of cells and participate in 
regulating key processes such as proliferation, division, 
and differentiation. Their functions may involve the regu-
lation of cell cycle control pathways, which are crucial for 
understanding the mechanisms of cell cycle regulation 
and occurrence of related diseases [6, 39, 41]. NOP56 
and UBE2E1 have been identified as molecular markers 
for endometrial cancer (Bradfield et al. 2020). We believe 
that these three genes were selected because they are 
involved in inhibiting apoptosis and promoting the pro-
liferation of liver cancer cells during further development 
of hepatocellular carcinoma. However, we considered the 
most crucial initiating stage to be mediated by BMI1, as 
it is a confirmed oncogene. Further experiments were 
designed to investigate the relevance of these results.

B-lymphoma Mo-MLV insertion region 1 (BMI1) 
encodes a crucial Polycomb group (PcG) protein that 
is involved in histone modification. This is achieved by 
forming a stable heterodimer with RING1B and sub-
sequently ubiquitylating histone H2A. BMI1 has been 
recognized as a proto-oncogene [43] that encodes a pro-
tein consisting of 324 amino acids, is primarily localized 
in the nucleus, and has been implicated in the develop-
ment of mouse pre-B-cell lymphomas [44]. Accumulating 
evidence suggests that BMI1 is closely associated with 
the onset, progression, and outcome of various human 
malignancies [17, 25, 30]. Previous reports have indicated 
that BMI-1 is overexpressed in gastric, ovarian, breast, 
head and neck, pancreatic, and radiation-induced lung 
cancers, as well as in primary hepatocellular carcinoma 
(HCC) and endometrial carcinoma [8, 14, 17, 21, 28, 36, 
48, 49]. Furthermore, overexpression of BMI-1 has also 
been found in patients with myelodysplastic syndromes, 
chronic myelogenous leukemia, acute myeloid leukemia, 
and lymphoma [1, 35, 37, 38]. BMI1 is overexpressed in 
one-third of patients with LIHC and is considered a key 
target for LIHC treatment [29]. Small molecule inhibitors 
targeting BMI1 have shown great potential in the treat-
ment of other tumors. Kreso and his colleagues found that 
PTC-209 could effectively inhibit the self-renewal ability 
of colorectal cancer initiating cells (CIC) by intratumoral 
administration, leading to a significant reduction in CICs 
and impaired tumor growth [27]. PTC-028 is a second-
generation BMI1 inhibitor with optimized pharmaco-
logical properties. Compared with PTC-209, PTC-028 
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differs in regulatory mechanisms, BMI1 turnover rate, 
cellular ATP reduction, mitochondrial ROS production, 
as well as administration route and dosage [12, 24, 46]. 
In vivo and in vitro experimental results show that PTC-
028 can significantly inhibit the self-renewal ability of 
tumor cells and significantly reduce local and metastatic 
tumor burden [4, 5]. PTC-596 is another commonly used 
small molecule BMI1 inhibitor that can selectively induce 
massive death of acute myeloid leukemia (AML) stem/
progenitor cells without affecting normal hematopoietic 
cells [40]. Therefore, confirming that BMI1 is a crucial 
factor involved in schistosomiasis-induced liver cancer 
is very important. Targeted small molecule drugs may 
reverse carcinogenesis. In this study, we considered that 
BMI1 may be key to unlocking the role of Schistosoma 
infection in the development of liver cancer. In addition, 
we discussed prognosis, immune escape, drug sensitivity, 
and other factors through bioinformatics analysis, which 
can guide clinical immunotherapy. Finally, we explored 
the expression changes and biological functions of BMI1 
during schistosome infection and LIHC development by 
molecular biological methods.

This study has some limitations. First, owing to a lack 
of sequencing results for schistosomiasis-induced liver 
cancer, we utilized datasets of a series of liver diseases 
induced by schistosomiasis for indirect research, select-
ing genes positively correlated with liver cancer. Cases 
of liver cancer caused solely by schistosomiasis are diffi-
cult to obtain; however, in the future, genomic detection 
in animal models may provide another source of data. 
Alternatively, detecting the four genes selected in our 
study in individuals with schistosomiasis may be highly 
meaningful. Second, the evidence supporting our conclu-
sions, especially from the molecular biology persecutive, 
is insufficient. Further detailed molecular mechanisms 
linking schistosomiasis infection and the development of 
LIHC need to be explored. In the future, we will continue 
to conduct in-depth research on this topic.

Conclusions
We conducted the first comprehensive investigation 
of the prognostic signature in Schistosoma japonicum 
infection-associated LIHC patients and the underlying 
molecular mechanisms. The prognostic signature iden-
tified herein not only enhances our understanding of 
the complex interplay between parasitic infection, host 
immune response, and LIHC development, but also 
has the potential to guide clinical decision-making and 
personalized treatment strategies for LIHC patients 
with a history of schistosomiasis. Future research 
should focus on validating these findings in larger, 
independent cohorts and investigating the underly-
ing biological processes, which may pave the way for 

novel therapeutic targets and strategies for the treat-
ment of LIHC patients with a history of schistosomiasis 
infection.
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