
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Li et al. Infectious Agents and Cancer           (2023) 18:30 
https://doi.org/10.1186/s13027-023-00507-w

Infectious Agents and Cancer

*Correspondence:
Yuxia Hou
houyuxia@mail.xjtu.edu.cn
1Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine 
Research, College of Stomatology, Xi’an Jiaotong University, 98# XiWu 
Road, Xi’an 710004, Shaanxi, P.R. China

2Department of Orthodontics, College of Stomatology, Xi’an Jiaotong 
University, 98# XiWu Road, Xi’an 710004, Shaanxi, P.R. China
3Department of Oral and Maxillofacial Surgery, College of Stomatology, 
Xi’an Jiaotong University, 98# XiWu Road, Xi’an 710004, Shaanxi, P.R. China

Abstract
Background  Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous tumor with diverse molecular 
pathological profiles. Recent studies have suggested the vital role of pyroptosis in tumor microenvironment. However, 
the expression patterns of pyroptosis in HPV-positive HNSCC are still unclear.

Methods  Unsupervised clustering analysis was used to identify the pyroptosis patterns based on the RNA-
sequencing data of 27 pyroptosis-related genes (PRGs) in HPV-positive HNSCC samples. Random forest classifier 
and artificial neural network were performed to screen the signature genes associated with pyroptosis, which were 
verified in two independent external cohorts and qRT-PCR experiment. Principal component analysis was used to 
develop a scoring system, namely Pyroscore.

Results  The expression variations of 27 PRGs in HPV-positive HNSCC patients were analyzed from genomic and 
transcriptional domains. Two pyroptosis-related subtypes with distinct clinical outcomes, enrichment pathways 
and immune characteristics were identified. Next, six signature genes (GZMB, LAG3, NKG7, PRF1, GZMA and GZMH) 
associated with pyroptosis were selected for prognostic prediction. Further, a Pyroscore system was constructed to 
determine the level of pyroptosis in each patient. A low Pyroscore was featured by better survival time, increased 
immune cell infiltration, higher expression of immune checkpoint molecules and T cell-inflamed genes, as well as 
elevated mutational burden. The Pyroscore was also related to the sensitivity of chemotherapeutic agents.

Conclusions  The pyroptosis-related signature genes and Pyroscore system may be reliable predictors of prognosis 
and serve as mediators of immune microenvironment in patients with HPV-positive HNSCC.

Keywords  Pyroptosis, Tumor microenvironment, Prognosis, Immunotherapy, HPV-infection, Head and neck 
squamous cell carcinoma
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Introduction
According to the statistics in 2018, head and neck squa-
mous cell carcinoma (HNSCC) was the 6th leading can-
cer worldwide, which is a heterogeneous malignancy 
with poor survival rates [1]. Human papillomavirus 
(HPV) infection is an increasingly common risk factor 
of HNSCC. HNSCC could be divided into three molecu-
lar subtypes: classical (CL), basal (BA) and mesenchymal 
(MS), whereas HPV-positive HNSCC does not fall into 
any group and belong to CL and MS subtypes [2]. The 
multi-omics data also suggest that HPV-positive HNSCC 
is a unique clinical entity with a specific genetic landscape 
and propensity for cell death compared to HPV-negative 
HNSCC [3]. In clinical practice, tumor immunotherapy 
has revolutionized traditional methods and achieved 
some gratifying achievements. Food and Drug Adminis-
tration has recommended immune checkpoint inhibitors 
(ICIs) such as pembrolizumab and nivolumab as the pre-
ferred choices for patients with recurrent or metastatic 
HNSCC [4]. Although HPV-positive patients have been 
proven to be more sensitive to immune therapy, only a 
limited subset of patients benefited from it. Therefore, 
there is an urgent need to explore the tumor microen-
vironment of HPV-positive HNSCC to improve clinical 
effectiveness and targeted therapy efficiency.

The form of cell death, including necroptosis, fer-
roptosis and pyroptosis, has attracted more and more 
attention in the context of tumors. Pyroptosis, an inflam-
matory programmed cell death, is characterized by the 
cleavage of gasdermin-family perforating proteins, fol-
lowed by the swelling and rupture of cell membranes, 
releasing intracellular contents and thus, triggering a 
strong inflammatory response [5]. It has been reported 
that pyroptosis-related genes (PRGs) were aberrantly 
and differentially expressed in different cancers, con-
tributing to tumor suppression or tumor progression 
[6]. GSDME has been shown to enhance the phagocyto-
sis of macrophages, as well as the number and function 
of NK cells and CD8(+) T lymphocytes, thereby exert-
ing tumor inhibition [7]. Awad et al. have confirmed 
that NLRP1 facilitated the progression of skin cancer by 
mediating the expression of IL-1b and IL-18 cytokines 
[8]. In HNSCC, Taxol treatment has been observed to 
induce pyroptosis in tumor cells by mediating Caspase-1/
GSDMD [9]. Zhang et al. found that the reducing expres-
sion of CD38 could prevent pyroptosis in HNSCC [10]. 
Notably, a series of studies have shown the close asso-
ciation between pyroptosis and anti-tumor immunity 
[11]. Given the overlapping and counteracting effects 
of multiple pyroptotic components, understanding the 
overall profile of PRGs on specific tumors, rather than 
the individual regulation of each component, seemed to 
be a more effective strategy to elucidate the crosstalk of 

pyroptosis and immune microenvironment in HPV-pos-
itive HNSCC.

In this paper, we comprehensively analyzed the expres-
sion profile of 27 PRGs in patients with HPV-positive 
HNSCC on the basis of genomic and transcriptional 
data. The study aimed to identify the pyroptosis-related 
subgroups, screen out the candidate genes and develop 
a pyroptosis scoring method to investigate the survival 
duration and immunological landscape of HPV-positive 
HNSCC.

Materials and methods
Data acquisition and processing
The analysis process of the article was presented in Addi-
tional file 1: Figure S1. Two HNSCC cohorts (TCGA-
HNSCC and GSE65858) were used as the training set. 
The RNA-sequencing data and related clinical infor-
mation of patients with HPV-positive HNSCC were 
retrieved from The Cancer Genome Atlas (TCGA) 
repository (https://portal.gdc.cancer.gov/repository) and 
the Gene Expression Omnibus (GEO) dataset (https://
www.ncbi.nlm.nih.gov/geo/). The results for fragments 
per kilobase million were standardized to transcripts 
per kilobase million. The two datasets were combined, 
and the “ComBat” algorithm was used to correct batch 
effects. A total of 138 HPV-positive HNSCC samples and 
44 normal samples with the corresponding clinical data, 
including overall survival (OS) time, age, gender, stage 
and TNM staging were enrolled. Besides, GSE3292 and 
GSE6792 databases from the GEO platform were com-
bined and used as the external validation cohort. The raw 
data were obtained from publicly available databases and 
no ethical events were involved.

Unsupervised clustering analysis of PRGs
We summarized data on 27 PRGs from previous stud-
ies [12–14]. The pyroclusters and pyroptosis-related 
geneclusters were identified by consensus clustering 
algorithm of R language ConsensuClusterPlus [15]. The 
selection criteria for the value of K: the modules were rel-
atively uniformly separated and the cumulative distribu-
tion function decreased slowly [16].

Gene set variation analysis (GSVA)
The “GSVA” package in R and a reference set (c2.cp.kegg.
v7.4.symbols.gmt) retrieved from the MSigDB database 
were used to run the GSVA assay [17].

Protein-protein interactions (PPI) analysis
Interactions between pyroptosis-related molecules were 
identified on the STRING website (https://string-db.
org/).

https://portal.gdc.cancer.gov/repository
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://string-db.org/
https://string-db.org/
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Identification and functional enrichment analysis of 
differentially expressed genes (DEGs)
The DEGs between the two pyroptosis patterns were 
determined by “limma” R package using the empirical 
Bayesian method [18]. Adjusted p < 0.001 and logFC = 1 
were set as screening criteria. The functional enrich-
ment analysis of DEGs, including the gene ontology (GO) 
terms and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways, were performed by “clusterProfiler” R 
package [19].

Random forest and artificial neural network screening for 
signature genes
First, univariate Cox regression analysis was performed 
to extract significant prognostic DEGs with p < 0.001 as 
the screening criterion. Next, the prognostic DEGs were 
input into randomForest software package. The variable 
importance value was obtained by the Gini coefficient 
method and decreasing mean square error [20]. Genes 
with an importance score greater than 3 and ranked the 
top 6 were selected as signature genes for subsequent 
analysis. Then, a neural network model of the signature 
genes was constructed by neuralnet package [21].

Analysis of tumor immune infiltration characteristics
The ESTIMATE algorithm was utilized to assess the 
immune and stromal scores and the relative purity of the 
tumor for each patient [22]. The CIBERSORT algorithm 
was utilized to calculate the proportion of 22 human 
immune cell subpopulations of each patient [23]. Cor-
relations between the expression of tumor-infiltrating 
immune cells (TIICs) and Pyroscore were calculated 
using six algorithms (XCELL, TIMER, QUANTISEQ, 
MCPCOUNTER, EPIC and CIBERSORT-ABS algo-
rithms) on the TIMER 2.0 platform [24]. Only differen-
tial TIICs (p < 0.05) were incorporated for the subsequent 
correlation analysis between TIICs and Pyroscore.

Quantitative real-time polymerase chain reaction (qRT-
PCR)
Five pairs of HPV-positive HNSCC and the adjacent nor-
mal tissues were collected from Stomatological Hospi-
tal of Xi’an Jiaotong University. The study was approved 
by the Ethical Review Committee of the Stomatologi-
cal Hospital of Xi’an Jiaotong University. All patients 
received written informed consent. All the specimens 
were subjected to qRT-PCR. Total RNA was extracted 
from tissues according to the instructions of RNAiso Plus 
(Takara, Tokyo, Japan) kit. According to PrimeScript™ 
RT-PCR (Takara) instructions, RNA was reversely tran-
scribed into cDNA in 20-µL volumes. The cDNA was 
treated by SYBR®Premix Ex Taq™II (Takara). The primers 
used in this experiment were shown in Additional file 2: 
Table S1.

Generation of the pyroscore
We constructed a scoring system to assess the pyropto-
sis expression level of each patient. The procedures for 
establishment of Pyroscore were as follows:

First, we extracted the overlapping DEGs between the 
pyroptosis patterns. Then, the HPV-positive HNSCC 
patients were divided into several groups using an unsu-
pervised clustering method. The consensus clustering 
algorithm was performed to determine the number of 
geneclusters as well as their stability. Next, we performed 
the prognostic analysis for each overlapping DEG using 
univariate Cox regression analysis and the genes with the 
significant prognosis were extracted for further analy-
sis. Finally, the principal component analysis (PCA) was 
conducted to construct pyroptosis relevant score sys-
tem. Both principal components 1 and 2 were selected 
to act as signature scores. After obtaining the prognostic 
value of each gene signature score, we applied a method 
similar to the gene expression grade index to assess the 
Pyroscore of each patient [25].

	 Pyroscorei =
∑

(PC1i + PC2i)

.Where i is the expression of overlapping DEGs with a 
significant prognosis between pyroptosis patterns.

Correlation with drug sensitivity
Based on the Genomics of Drug Sensitivity in Cancer 
database (https://www.cancerrxgene.org/), we used the 
R package “pRRophetic” to predict the chemosensitivity 
of each sample. The estimated semi-inhibitory concentra-
tion (IC50) for each specific chemotherapeutic agent was 
obtained by the “linearRidge” function.

Statistical analysis
Data processing was completed by using the PERL lan-
guage program (version 5.32.1). Statistical analyses were 
performed utilizing R software and related calculate 
packages (version 4.1.1). For clusters of two normally dis-
tributed variables, unpaired Student’s t-tests were used 
for analysis. For clusters of two non-normally distrib-
uted variables, the Wilcoxon rank-sum test was used to 
analyze. For multiple comparisons, Kruskal-Wallis and 
one-way ANOVA tests were used. Correlations between 
the variables were analyzed using Spearman’s correlation 
coefficient. The “Surv-cut point” function in the R pack-
age ‘Survminer’ was used to evaluate the cutoff point of 
each group. The “Surv-cut point” function was based on 
maximally selected rank statistics, which enabled the fast 
assessment of all potential cut points, to find the sepa-
rating partition and determine the best cut-off point of 
continuous variables [26]. Survival curves were generated 
using the Kaplan-Meier (K-M) method and the log-rank 

https://www.cancerrxgene.org/
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test was used to determine differences between groups. 
If not special explanation above, p < 0.05 was deemed as 
statistically significant and all tests were two-sides.

Results
Overview of genetic and transcriptional variations of PRGs 
in HPV-positive HNSCC
In this study, protein-protein interaction networks 
functional enrichment analysis of the 27 pyroptosis-
related molecules were analyzed by STRING platform, 
which showed widespread protein interactions of PRGs 
(Fig.  1A). Next, somatic copy number variation (CNV) 
of these PRGs in HPV-positive HNSCC were analyzed 
(Fig.  1B). Among them, the CNV of APIP, GSDMD, 
GSDMC and AIM2 significantly increased, while 
the CNV of CASP4, CASP5 and CASP1 remarkably 
decreased. Figure 1 C has shown the chromosomal local-
ization information of these PRGs with CNV. In addition, 

we compared PRGs expression in normal and HPV-pos-
itive HNSCC tissues. As shown in Fig. 1D, the majority 
of PRGs were significantly elevated in tumor tissue, while 
GSDMA and CTSG were significantly decreased. Col-
lectively, the above results have shown the genomic and 
transcription profiles of PRGs and their significant dif-
ferences between normal and HPV-positive HNSCC tis-
sues, suggesting the imbalance of PRGs and its potential 
role in the occurrence of HPV-positive HNSCC.

Identification of two different pyroptosis subtypes
To reveal the expression patterns of pyroptosis in HPV-
positive HNSCC. The RNA expression of 138 HPV-
positive HNSCC patients from TCGA-HNSCC and 
GSE65858 databases was extracted. With the unsu-
pervised clustering algorithm in R language, we found 
that when the samples were clustered into two mod-
ules (k = 2), the clustering stability achieved satisfactory 

Fig. 1  Genomic and transcriptional variations of pyroptosis-related genes (PRGs) in HPV-positive HNSCC. (A) The potential protein-protein interaction 
networks among 27 pyroptosis-related proteins were drawn on the STRING website. (B) Frequency of copy number variations (CNV) gain and loss in 
27 PRGs. (C) The chromosomal localization information of PRGs with CNV. (D) Expression levels of 27 PRGs in HPV-positive HNSCC and normal tissues. 
*p < 0.05, **p < 0.01, and ***p < 0.001
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results (Fig.  2A and B and Additional file 1: Figure S2). 
The tumor samples were divided into two types, namely 
pyrocluster A (n = 66) and pyrocluster B (n = 72). K-M 
analysis showed that patients in pyrocluster A had a 
significantly better OS time than those in pyrocluster B 
(p = 0.037, Fig.  2C). Then, we examined the association 
between clinicopathological features and scorch mol-
ecule expressions in the two pyroclusters. As shown in 
Fig. 2D, pyrocluster B had significantly higher mortality 
and lower T staging (p < 0.05) compared to pyrocluster A. 
The majority of PRGs was significantly higher in pyroclu-
ster A than that in pyrocluster B (Fig. 2E).

The two pyroptosis patterns associated with distinct 
biological processes and immune infiltration 
characteristics
Then, we analyzed the enrichment pathways of the 
two patterns to explore the underlying biological pro-
cesses of pyroptosis in HPV-positive HNSCC. The 
GSVA enrichment analysis showed the differential 
enrichment pathways between the two pyroclusters. 
As the results suggested, pyrocluster A was enriched in 

immune-activated hallmarks such as Toll-like receptor 
signaling pathway, NOD-like receptor signaling path-
way, T and B cell receptor signaling pathways (Fig.  3A 
and Additional file 2: Table S2). To further understand 
the influence of pyroptosis-related molecules on TME 
in HPV-positive HNSCC patients, we utilized the ESTI-
MATE algorithm to assess the immune and stromal 
scores as well as the relative tumor purity of each patient. 
We found that patients in pyrocluster A had remarkably 
higher immunescores and estimatescores, while patients 
in pyrocluster B had remarkably higher tumor purity 
(Fig. 3B C). Given the unique role of immune checkpoint 
molecules in tumor immune microenvironment (TIME), 
we explored the expression of PD-1, PD-L1, LAG3, GAL9 
and CTLA4 and found that the expression of these mole-
cules was significantly elevated in pyrocluster A than that 
in pyrocluster B (Fig.  3D). Moreover, we estimated the 
infiltration characteristics of 22 immune cells in pyropto-
sis patterns using the CIBERSORT algorithm. The results 
showed that the activated TIICs, especially B memory 
cells, CD8(+) T cells, CD4 memory-activated T cells, 
activated NK cells, and M1 macrophage cells infiltration 

Fig. 2  Unsupervised learning to identify two pyroclusters based on the expression of 27 PRGs. (A) Consensus clustering matrix defining two patterns 
(k = 2) in TCGA-HNSCC and GSE65858 cohorts. (B) The cumulative distribution function of clustering. (C) The two pyroclusters have a substantial difference 
in overall survival time according to Kaplan-Meier survival analysis. (D) The heatmap shows the clinicopathological traits and unsupervised clustering 
of the 27 PRGs in TCGA-HNSCC and GSE65858 cohorts. Red denotes higher expression, whereas blue denotes lower expression. (E) Relative expression 
levels of 27 PRGs between the two pyroclusters
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were notably higher in pyrocluster A than those in pyro-
cluster B, while CD4 memory-resting T cells, regulatory 
T cells (Tregs), activated dendritic cells and activated 
mast cells infiltration were notably higher in pyrocluster 
B than those in pyrocluster A (Fig. 3E).

Two scorch gene subtypes were recognized using 
prognostic DEGs
By conducting the “limma” package, the DEGs between 
the two pyroptosis patterns were identified. To explore 
the biological mechanisms involved in pyroptosis-related 
molecules, functional enrichment analysis of DEGs was 
performed. GO analysis exhibited the top 5 cellular com-
ponents, molecular functions and biological processes 
respectively, revealing that immune-related processes, 
especially major histocompatibility complex (MHC) pro-
teins and T-cell were activated (Fig.  4A and Additional 
file 2: Table S3). The antigen processing and presenta-
tion process by MHC II affected T cell recognition and 
tumor cell killing [27]. KEGG analysis indicated that the 
DEGs were mainly enriched in immune and inflamma-
tion related pathways, such as Th1 and Th2 cell differen-
tiation, Th17 cell differentiation and inflammatory bowel 
disease (Fig. 4B and Additional file 2: Table S3).

Next, the univariate Cox regression analysis was per-
formed to screen out the prognosis related DEGs. With 
p < 0.001 as the screening criterion, a total of 66 prognos-
tic DEGs between the two scorch patterns were identified 
(Additional file 2: Table S4). Consequently, 138 HNSCC 
HPV-positive patients were classified into 2 genomic 
subtypes using the consensus clustering algorithm based 
on the expression of the 66 DEGs (Fig. 4C and Additional 
file 1: Figure S3). K-M analysis method showed the sig-
nificant difference of OS time between the gene subtypes 
(p = 0.023) (Fig. 4D). The heatmap showed the expression 
of the 66 genes in the geneclusters and the pyroptosis 
patterns as well as the relationship between these genes 
and clinical parameters (Fig.  4E). In addition, the two 
geneclusters exhibited significant differences in PRGs 
expression (Additional file 1: Figure S4).

Random forest and neural network algorithms to explore 
the signature genes
To find the signature genes associated with the pyrop-
tosis, we utilized the random forest algorithm to assess 
the importance of 66 prognostic DEGs (Fig.  5A). The 
variable importance was measured by the Gini coeffi-
cient method and we defined genes with an importance 

Fig. 3  Biological processes and immune characteristics of the two pyroclusters. (A) The heatmap shows the biological processes in the two pyroclusters 
analyzed by GSVA. Red denotes activated pathways and blue denotes inhibited pathways. (B-C) Tumor immune microenvironment scores (B) and tumor 
purity (C) between the pyroclusters. (D) The expression of immune  checkpoint molecules between the two pyroclusters. (E) The abundance of 22 tumor 
immune infiltrating cells between the two pyroclusters
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score greater than 3 and ranked the top 6 as the signature 
genes, including GZMB, LAG3, NKG7, PRF1, GZMA 
and GZMH (Fig. 5B). Consequently, the artificial neural 
network model depicting the distribution of the signature 
genes in pyroclusters was shown in Fig. 5C. The weights 
of the signature genes were shown in Additional file 2: 
Table S5. The heatmap showed the signature genes could 
distinguish the two pyroclusters (Fig.  5D). It could be 
seen that all signature genes were low expressed in pyro-
cluster A, whereas high expressed in pyrocluster B. Then, 
the classification efficiency of the model was evaluated 
by receiver operating characteristic (ROC) curves in the 
training group (TCGA-HNSCC and GSE65858 cohorts). 

As shown in Fig. 5E, the area under the curve (AUC) of 
the training group was up to 0.997. The performance 
was confirmed in the external GEO datasets (GSE3292 
and GSE6792 cohorts). As shown in Fig. 5F, the AUC of 
the test group was up to 0.892. In addition, the mRNA 
expression levels of the signature genes in HPV-positive 
HNSCC tissues were verified to be higher than that in 
adjacent normal tissues detected by qRT-PCR (Fig. 5G).

Construction and validation of the prognostic pyroscore
The above studies demonstrated a robust associa-
tion among pyroptosis, tumor immunity and survival 
in HNSCC HPV-positive patients, so we introduced 

Fig. 4  Generation of three pyroptosis-related geneclusters based on prognostic differentially expressed genes (DEGs). (A-B) Gene Ontology (A) and 
Kyoto Encyclopedia of Genes and Genomes (B) enrichment analysis of DEGs between the two pyroclusters. (C) Consensus clustering matrix defining two 
genomic subtypes (k = 2). (D) Kaplan-Meier survival analysis shows significant differences in overall survival time between genecluster A and genecluster 
B. (E) The heatmap shows the correlation between clinicopathological traits and the geneclusters. Red denotes high expression and blue denotes low 
expression
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a unique scoring scheme, the Pyroscore, to assess the 
pyroptosis expression level of each patient. By employ-
ing principal component analysis, the sum of the top two 
contributing components was used as the Pyroscore for 
each patient. By conducting the R package “Survminer”, 
the optimal cut-off was calculated and then patients were 
divided into high Pyroscore and low Pyroscore groups. 
As shown in Fig.  6A, the distributions of genecluster, 
pyrocluster, Pyroscore, and survival status were plotted 
as a Sankey diagram. Of note, Pyroscore was confirmed 

to be effective in evaluating the pyroclusters and gene-
clusters. Comparing the level of scorch death among the 
subtypes, it was found that pyrocluster A and genecluster 
A had notably lower Pyroscore, while pyrocluster B and 
genecluster B had notably higher Pyroscore (Fig. 6B C). 
In addition, in the training and two validation cohorts, 
K-M analysis showed significantly higher OS time in low 
Pyroscore groups than those in high groups (p = 0.006; 
p = 0.024; p = 0.035;Fig. 6D - F). Moreover, Pyroscore was 
found to be negatively associated with the expression 

Fig. 5  Exploration of the signature genes by random forest classifier and neural network model. (A) The relationship plot between the error rate and the 
number of decision trees. When the number of decision trees is about 400, the error rate is relatively stable. (B) The importance score of the signature 
genes using the Gini coefficient method. The X-axis denotes the signature genes, and the Y-axis denotes the importance index. (C) The neural network 
diagram demonstrates the relationship between the signature genes and the two pyroclusters. (D) The signature genes were differentially expressed in 
the two pyroclusters. (E-F) The receiver operating characteristic curve analysis of the classification efficiency of the signature genes in training sets (TCGA-
HNSCC and GSE65858 cohorts) and external testing sets (GSE3292 and GSE6792 cohorts). (G) Expression levels of the 6 signature genes in HPV-positive 
HNSCC and their adjacent normal tissues using qRT-PCR.
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of most PRGs, especially GZMA, GZMB and PRF1 
(Fig. 6G). Overall, Pyrocluster A and genecluster A with 
lower Pyroscore showed better OS time, which was con-
sistent with our previous results.

Pyroscore associated with immune cell infiltration and TME
The abundance of immune cells was thoroughly exam-
ined using XCELL, TIMER, QUANTISEQ, MCP-
COUNTER, EPIC and CIBERSORT-ABS algorithms. 
Surprisingly, Pyroscore was negatively correlated with 
the level of infiltration of most immune cells, except 
for uncharacterized cells (EPIC) and NK-resting cells 
(CIBERSORT-ABS) (Fig. 7A and Additional file 2: Table 
S6). Of note, CD 8(+) T cell was strongly correlated with 
Pyroscore through the detection by different platforms. 
Then, we used the ESTIMATE algorithm to evaluate the 
immune and matrix components in the TME. Patients in 
the low Pyroscore group had higher stromalscore, immu-
nescore and ESTIMATEscore as well as lower tumor 
purity compared to the high Pyroscore group (Fig.  7B 
C). In addition, T cell–inflamed gene expression profile 
(GEP) is a symbol of CD 8(+) T cell activation and closely 
reflects the tumor’s sensitivity to immune response 
[28]. Of the 18 T cell-inflamed genes, 17 genes were 

considerably higher in the low Pyroscore groups than 
that in the high Pyroscore groups (Fig. 7D).

Clinical implications of pyroscore in antitumor therapy
Considering the critical value of immune checkpoints in 
immunotherapy, we compared the expression levels of 
CTAL-4, GAL9, LAG3, PD-1 and PD-L1 in Pyroscore 
groups. We found that the low Pyroscore group had 
higher expression of CTAL-4, GAL9, LAG3, PD-1and 
PD-L1, suggesting that patients with low Pyroscore 
may be more sensitive to immunosuppressive therapies 
(Fig.  8A). In addition, studies have shown that tumor 
mutational burden (TMB) may assist in predicting clini-
cal response, which may be associated with neoanti-
gens generated by the mutation, thereby enhancing 
the immune system’s ability to recognize cancer cells 
[29]. As shown in Fig.  8B, we found that patients with 
low Pyroscore showed a significantly higher TMB than 
patients with high Pyroscore. Further, compared with the 
high TMB group, patients with low TMB have a better 
OS time (Fig. 8C). We next selected the commonly used 
chemotherapeutic agents for the treatment of HNSCC 
in order to examine drug sensitivity variations between 
patients with high and low Pyroscores. To compute 
IC50 drug sensitivity values, we utilized the R package 

Fig. 6  Construction and validation of Pyroscore. (A) Alluvial diagram showing the distributions of pyroclusters, geneclusters, Pyroscores and survival 
outcomes. (B) Pyroscore is differentially expressed in pyrocluster A and B. (C) Pyroscore is differentially expressed in genecluster A and B. (D) Kaplan-
Meier survival analysis shows a significant difference in overall survival time between high and low Pyroscore groups in training sets (TCGA-HNSCC and 
GSE65858 cohorts). (E) Kaplan-Meier analysis of overall survival time between high and low Pyroscore groups in internal testing set (TCGA-HNSCC cohort). 
(F) Kaplan-Meier analysis of overall survival time between high and low Pyroscore groups in internal testing set (GSE65858 cohort). (G) The correlations 
among Pyroscore and PRGs. Red dots denote positive correlations and blue dots denote negative correlations. Larger and deeper dots represent stronger 
correlations
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‘pRRophetic.‘ The IC50 values of paclitaxel and docetaxel 
were considerably lower in the high Pyroscore group, 
whereas the values of axitinib, methotrexate, and gem-
citabine were significantly higher in the high Pyroscore 
group compared to the low Pyroscore group (Fig. 8D-H).

Discussion
The intense inflammatory response elicited by pyrop-
tosis was confirmed to affect TIME and tumor progres-
sion [30, 31]. Although immunotherapy has made great 
strides in HNSCC, tumor heterogeneity has yielded 
unpredictable clinical responses, which was a serious 
challenge for antitumor therapy. HPV infection has been 

Fig. 8  The role of Pyroscore in anti-tumor therapy. (A) The expression of immune  checkpoint molecules in Pyroscore groups. (B) The tumor mutational 
burden in Pyroscore groups. (C) Kaplan-Meier survival analysis shows significant differences in overall survival time between high and low Pyroscore 
groups. (D-G) The sensitivity of commonly used drugs is significantly different in Pyroscore groups

 

Fig. 7  The immune characteristics of different Pyroscore subgroups. (A) Bubble plot depicting the correlation between Pyroscore and immune infiltrat-
ing cells. (B-C) Tumor immune microenvironment scores (B) and tumor purity (C) in different Pyroscore subgroups. (D) The expression profile of 18 T 
cell-inflamed genes in different Pyroscore subgroups
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reported to encompass much of the heterogeneity of 
HNSCC [2]. Therefore, we focused on the pyroptosis pat-
terns in HPV-positive HNSCC to better understand and 
manage this disease.

In this study, we firstly explored genetic and transcrip-
tional variations of 27 PRGs in HPV-positive HNSCC 
and found that the most expression of PRGs was signif-
icantly increased in tumor samples than that in normal 
samples. Then, two pyroptosis subtypes were identified 
based on the expression of PRGs. Surprisingly, the two 
pyroptosis patterns exhibited distinct prognosis, bio-
logical processes and TIME characteristics. Compared 
with pyrocluster B, pyrocluster A had significantly bet-
ter survival time. Besides, pyrocluster A was significantly 
associated with more enriched immune pathways, higher 
immune cell abundance, higher expression of immune 
checkpoint molecules and activated TIICs, which indi-
cated that pyrocluster A was an immune “hot” tumor 
compared to pyrocluster B. A “hot” tumor indicated a 
better treatment response to immunotherapy. Studies 
also have reported that pyroptosis inducers combined 
with PD-1 inhibitors could turn a “cold” tumor into a 
“hot” tumor that the immune system could recognize, 
which demonstrated the enormous therapeutic applica-
tion value of pyroptosis [32].

Next, we explored the pyroptosis subtypes related 
genes and found that the inflammatory and immune-
related biological processes were involved, especially the 
activation of MHC proteins and T-cells. Based on these 
pyroptosis-related genes, six signature genes associated 
with pyroptosis (GZMB, LAG3, NKG7, PRF1, GZMA 
and GZMH) were identified and their prognostic value 
was verified. Given the importance of pyroptosis in 
prognosis and TIME, we developed a novel scoring sys-
tem, Pyroscore, to quantify pyroptosis levels in patients 
with HPV-positive HNSCC. Herein, patients with low 
Pyroscores had significantly better OS time than those 
with high Pyroscores. Besides, Pyroscore was negatively 
associated with the expression of most PRGs, espe-
cially GZMA, GZMB and PRF1. Previous reports have 
shown that when GZMA cleaved GSDMB or GZMB 
cleaved GSDME, NK cells and CD8(+) T cells directly 
triggered pyroptosis of tumor cells [7, 32]. The killing 
of tumor cells by NK cells and cytotoxic T lymphocytes 
was the ultimate pivotal event of antitumor immunity 
and was previously thought to be non-inflammatory. In 
GSDM-expressing tumors, the killing effect of immune 
cells could be transformed into inflammatory pyropto-
sis when gasdermin was directly cleaved and activated 
by granzymes [33]. It was proved that GSDME-mediated 
pyroptosis induced by chemotherapy drugs played a role 
in anti-tumor response of oral cancer [34]. Recently, 
PRF1 has been reported to be a prognostic marker with 
implications on the immune infiltration of HNSCC [35]. 

Our findings have suggested the feasibility of targeted 
pyroptosis to aid the clinical treatment for patients with 
HNSCC.

TIME refers to the milieu in which tumor cells live, 
which includes blood vessels, extracellular matrix, 
immune cells, and signaling molecules, etc [36]. The 
occurrence and development of tumor is the result of 
the interaction between tumor cells and their microen-
vironment. TIICs are closely associated with immuno-
therapy sensitivity and understanding the composition 
of immune cells in TIME can reveal the heterogeneity of 
tumors [37]. In this study, pyrocluster A associated with 
low Pyroscore was an actived immune signature. Numer-
ous evidence has reported that effector and memory T 
cells exert tumor-killing functions, whereas Tregs weaken 
anti-tumor immune responses and exert immunosup-
pressive effects [38]. Herein, pyrocluster A was infiltrated 
with CD8(+) T cells and CD4 memory-activated T cells, 
while pyrocluster B showed higher infiltration of CD4 
memory-resting T cells and Tregs. Besides, Pyroscore 
was also strongly correlated with CD8(+) T cells. M1-type 
macrophages exerted pro-inflammatory and anti-tumor 
effects, but tumor-associated macrophages in TIME were 
M2-type and promoted angiogenesis and tumor inva-
sion by secreting Th2 cytokines [39]. Pyrocluster A had 
higher M1 macrophage cells infiltration than pyrocluster 
B. Recent studies revealed that B cells were the strongest 
prognostic element and involved in the immune response 
[40]. In this study, pyrocluster A with better survival time 
had higher infiltration of B cells, which was consistent 
with the previous studies.

Tumor cell resistance to the immunosuppressive 
microenvironment, such as through PD-1, is a major 
dilemma in antitumor therapy. Blocking immune check-
point proteins through ICIs can reawaken the immune 
system. However, once activated, T cells must be suf-
ficient to distinguish tumors from normal cells. The 
presence of immunogenic neoantigens on the surface of 
cancer cells helps the immune system to recognize can-
cer cells in the context of MHC [41]. Due to the increased 
neoantigens produced by somatic tumor mutations, the 
higher the number of mutations (higher the TMB), the 
higher the likelihood that certain neoantigens presented 
by MHC proteins are immunogenic and thus can help T 
cells to recognize and eradicate cancer cells [29]. Besides, 
studies have demonstrated that T cell-inflamed GEP was 
a unique feature of T-cell activation and could manifest 
clinical antitumor efficacy [28]. The high T cell-inflamed 
GEP was associated with a significant pan-cancer sur-
vival benefit and favored anti-PD-1 immunotherapy [42]. 
Patients in pyrocluster A with low Pyroscore had higher 
TMB, elevated expression of immune checkpoint mol-
ecules (CTAL-4, GAL9, LAG3, PD-1 and PD-L1) and T 
cell–inflamed genes, which indicates a better response 
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to immunotherapy, especially to ICIs treatment. In addi-
tion, patients in high and low Pyroscore groups had dif-
ferent sensitivities to commonly used chemotherapeutic 
agents, suggesting that Pyroscore could assist in guiding 
clinical drug administration.

However, there are some limitations in this study. First, 
we did not find clinical data on HPV-positive HNSCC 
patients treated with ICIs to further validate our results. 
Second, the original data used in this study is retrospec-
tive from the cross-queue, and prospective studies are 
necessary to avoid the inherent errors of retrospective 
research in the future.

Conclusions
The need for personalized treatment of patients has 
been proposed because of the heterogeneity of tumors. 
We comprehensively analyzed the pyroptosis patterns of 
HPV-positive HNSCC and revealed the underlying bio-
logical processes and immune infiltration characteristics 
affected by the PRGs. Besides, the pyroptosis-related sig-
nature genes and the Pyroscore system were developed 
to explore the feasibility of targeted pyroptosis assisted 
immunotherapy for HPV-positive HNSCC. The land-
scape of pyroptosis facilitates our understanding of the 
TIME and lays the foundation to improve the immuno-
therapeutic efficacy of HNSCC.
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