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Abstract 

The role of gut microbiota and its products in human health and disease is profoundly investigated. The commu‑
nication between gut microbiota and the host involves a complicated network of signaling pathways via biologi‑
cally active molecules generated by intestinal microbiota. Some of these molecules could be assembled within 
nanoparticles known as outer membrane vesicles (OMVs). Recent studies propose that OMVs play a critical role in 
shaping immune responses, including homeostasis and acute inflammatory responses. Moreover, these OMVs have 
an immense capacity to be applied in medical research, such as OMV‑based vaccines and drug delivery. This review 
presents a comprehensive overview of emerging knowledge about biogenesis, the role, and application of these 
bacterial‑derived OMVs, including OMV‑based vaccines, OMV adjuvants characteristics, OMV vehicles (in conjugated 
vaccines), cancer immunotherapy, and drug carriers and delivery systems. Moreover, we also highlight the signifi‑
cance of the potential role of these OMVs in diagnosis and therapy.
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Key points

OMVs are nanosized proteoliposomes derived from 
the outer membrane of Gram-negative bacteria.
Based on the physiological characteristics of OMVs, 
The delivery of therapeutic cargos, such as miRNAs 
and proteins to tissues, has now been identified.
Also, Designing powerful nanocarriers has adminis-
tered bioengineering to target particular delivery of 
therapeutics for OMVs

Introduction
Gut microbiota plays a crucial role in the absorption of 
minerals and nutrients, synthesizing enzymes, vitamins, 
amino acids, and modulating the immune system [1–3]. 
Besides, a growing body of evidence shows that bacte-
rial dysbiosis contributes to the development of some 
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disorders, such as inflammatory bowel disease (IBD), 
obesity, irritable bowel syndrome (IBS), diabetes, cancer, 
multiple sclerosis (MS), and neurological diseases [4, 5]. 
On the other hand, the interplay between gut microbi-
ota and immune cells is involved in the homeostasis of 
the gastrointestinal (GI) tract, health maintenance, and 
infection prevention in the host [6–8].

The shedding process of membrane vesicles (MVs) has 
been characterized as an evolutionarily conserved mech-
anism across eukaryotes and prokaryotes for intercellu-
lar communications [9]. These nano-sized, spherical, and 
bilayer proteolipid extracellular MVs harbor subsets of 
lipids, proteins, nucleic acids, as well as metabolites [9]. 
According to the hosts that extracellular vesicles (EVs) 
are derived from, these molecules are differently named, 
such as outer MVs (OMVs) for Gram-negative microor-
ganisms; MVs for Gram-positive microorganisms; and 
microvesicles or exosomes for mammalian cells [10–14]. 
In this regard, microbiota-derived EVs have been identi-
fied as a carrier in host-bacteria interplays that, in terms 
of immune receptors, cause immune reactions [15]. It has 
been documented that non-pathogenic and pathogenic 
Gram-negative bacteria can generate vesicles [16]. The 
analysis and characterization of OMVs indicate that bac-
terial pathogens generate these secretory components to 
translocate virulent ingredients such as toxins, adhesins, 
and immunomodulatory factors, leading to cytotoxicity 
and modulation of immune response [16].

The ability of microbiota-derived OMVs to attach, 
enter, and deliver the cargos into host cells is based on 
the fusion capability of these vesicles to various mem-
branes [17]. Based on the physiological characteristics of 
OMVs, the delivery of therapeutic cargos, such as micro-
RNAs and proteins to tissues, has now been identified 
[18–21]. Also, bioengineering to target particular deliv-
ery of therapeutics has been administered by designing 
powerful nanocarriers [17, 18, 22]. The encapsulation, 
amphipathic nature, and bilayer topology of OMVs result 
in increased life span, enhanced stability, diminished side 
effects of these modules [22, 23]. Studies demonstrated 
that loading chemotherapeutic agents on OMVs, such 
as doxorubicin, can lead to increased accumulation of 
drugs in tumors and diminished toxicity compared to 
free doxorubicin [24, 25]. Besides, since MVs can easily 
transport molecules in the biological systems, they could 
be used to manufacture vaccines for effective antigen 
delivery [26]. For instance, it has been found that OMVs 
have powerful potential for adjuvants and are currently 
used in some vaccine platforms [27]. The essential activ-
ity of bacterial OMVs is to transfer biomolecules to par-
ticular targets [28]. Accordingly, they could be served 
as a new drug delivery tool because of various advan-
tages, such as targeted delivery without causing toxicity 

on surrounding cells/tissue [28]. Bacteria OMVs can 
be loaded with many ligands using genetically handling 
their bacterial producers. These targeting ligands induce 
the deposition of drugs in target sites [28]. Besides, the 
OMV size is another advantage that allows the passively 
delivery of drugs to tumors via enhanced permeability 
and retention (EPR) inducing local immunity [28]. Tar-
geted delivery to specific cells is another advantage of 
OMVs in drug delivery. OMVs originate from microor-
ganisms and contain various pathogen-associated molec-
ular patterns (PAMPs) that target cells as neutrophils 
and macrophages to quickly recognize and internalize 
[28]. Adjuvants can be highly beneficial in incorporated 
into OMVs, as they render full immunity and show low 
toxicity; hence, these molecules could also be employed 
as a novel mucosal delivery tool in vaccines [27]. In this 
review, we will discuss current updates on microbiota-
derived OMVs in bacteria and their role in the host com-
munication. We will also provide an overview of the 
current application and future perspective of OMVs for 
diagnostic and therapeutic purposes (Table 1).

Extracellular vesicles
EVs are lipid-based vesicles containing lipids, proteins, 
and nucleic acids that are generated by various cells 
released into the surrounding milieu [29–31]. These vesi-
cles are lipid packages and include exosomes, microvesi-
cles, ectosomes, oncosomes, and apoptotic bodies [32]. 
EVs have different sizes (< 50 nm to several μm), chemical 
ingredients, and activities [33]. Besides, both commen-
sal and pathogenic bacteria generate EVs categorized as 
OMVs produced by Gram negative bacteria or as MVs 
synthesized by Gram-positive bacteria [34]. Bacteria-
derived EVs could influence host immunity, resulting 
in pro-inflammatory reactions [34]. On the other hand, 
probiotic-derived EVs usually cause immune modulation 
[34]. In this section, we will discuss and provide an over-
view of the latest information on EVs derived from the 
host and bacteria.

Host‑derived extracellular vesicles
In the host, micro-vesicles (MVs), exosomes, and apop-
totic-derived bodies are listed to characterize host-
derived EVs based on their biogenesis profile through 
membrane shedding, multicellular bodies, and apop-
tosis [35]. MVs are plasma membrane-derived vesicles 
with a size range of 100–1000 nm and are generated by 
vesiculation from eukaryotic cells. In this process, the 
asymmetry of phospholipid membrane mediated by 
cytoskeletal remodeling and enhanced cytosolic calcium 
play a vital role in shaping MVs [36]. MVs differ from 
other EVs in terms of the contents of phospholipids and 
proteins on their surface [37]. The importance of MVs 
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in the propagation of coagulation and platelet aggrega-
tion due to the activity of membrane phospholipids has 
been addressed [38, 39]. Also, a growing body of evidence 
exhibits a connection between the overproduction of 
MVs and inflammatory reactions due to enhanced MV 
formation following the induction of tumor necrosis fac-
tor (TNF) [40].

Exosomes, another type of EVs, are sphingolipid- and 
cholesterol-rich membranes with a size range between 30 
and 150  nm generated in all host cells [41]. It has been 
noted that exosomes are synthesized through inward 
budding of the endosomal compartments, followed by 
the fusion of multi-vesicular bodies to the cell mem-
brane and the generation of intraluminal vesicles into 
the extracellular milieu [36]. It is known that the cargo of 
exosomes includes proteins, metabolites, lipids, as well as 
nucleic acids (mRNA, miRNA, and DNA) [36]. Exosomes 
can interact or be generated and internalized by recipi-
ent cells through various mechanisms such as fusion 
to the plasma membrane and/or adhesion to receptors 
mediating endocytosis [42, 43]. Finally, apoptotic bod-
ies, another type of host EV, are larger than exosomes 
and contain cellular organelles, nuclear materials, and 
membrane/cytosolic contents. They are produced during 
the late phase of apoptosis [44]. Also, apoptotic bodies 
expose phosphatidylserine in their outer leaflet [44].

Microbiota‑derived extracellular vesicles
Like other organisms, bacteria generate EVs with a 
size < 300  nm as a communication tool [45]. Bacteria-
derived EVs could cause a particular advantage via the 
horizontal transfer of resistance genes to other bacteria 
[46]. Also, these vesicles are a detoxification system that 
facilitates the depletion of toxic materials from mother 
bacteria [46]. Besides, bacteria-derived EVs prompt their 
adaptation to a new condition, as seen in commensal 
bacteria in which their EVs are involved in the coloniza-
tion of the gastrointestinal tract [47]. Most Gram-nega-
tive-derived EVs are categorized as OMVs, a bleb form of 
OM that contains lipids, lipoproteins, and OM proteins 
[48]. Also, several Gram-negative bacteria could produce 
another type of EV, outer-inner-MVs, containing cyto-
plasmic and periplasmic components such as adenosine 
triphosphate (ATP), DNA cytoplasmic proteins [49].

Some conditions are necessary for vesiculating and 
synthesizing bacteria-derived vesicles [50]. Studies per-
formed on vesiculation mutants have found that vesicu-
lation does not stem from lysis or disintegration of the 
bacterial envelope [51]. In summary, it has been found 
that survival is the main advantage of vesicle formation in 
bacteria, causing the liberation of toxic material and mis-
folded proteins and/or eliminating the surface-attacking 
factors involved in micro-nutrient acquisition [51].

Outer membrane vesicles characterization 
and biogenesis
Gram-negative bacteria-derived OMV, a bilayer spheri-
cal nanostructure (100–300  nm) with an internal cavity 
created into the extracellular milieu, made of the phos-
pholipid bilayer, lipopolysaccharide (LPS), membrane 
protein, cell wall components, peptidoglycan, ion metab-
olites, signaling molecules, and nucleic acids (Fig.  1) 
[52–54]. Bacterial pathogen-derived OMVs are enriched 
with proteins involved in an invasive activity that causes 
efficient internalization of these vesicles into host cells 
[18]. Invasins, and type III secretion system-dependent 
integration of the hydrophobic proteins IpaD, IpaB, and 
IpaC (key virulence factors) of Shigella flexneri and the 
Ail protein of Escherichia coli is considered exemplary 
proteins, facilitating the process of internalization [55]. 
Gram-negative species include E. coli, Shigella sp., Pseu-
domonas aeruginosa, Campylobacter jejuni, Salmonella 
sp., Helicobacter pylori, Vibrio sp., Neisseria sp., and Bor-
relia burgdorferi, have been found to generate OMVs [50, 
53, 56–67]. Besides their communication activity, Gram-
negative-derived OMVs can transfer bacterial virulence 
factors as cargos to OMVs, leading to increased bacterial 
survival [68, 69].

To produce OMVs, OM must be released from the 
underlying peptidoglycan and swell outwards so that the 
vesicle membrane can detach [50]. Besides, the biophysi-
cal attribute of the OM-lipids and their interplays with 
proteins or other components that impact membrane 
bending has crucial activity in the biogenesis of OMVs 
[50]. Multiple models of OMV biogenesis have been pro-
posed [18]. Studies found that reducing the cross-linking 
bond between OM and peptidoglycan induces the forma-
tion of OMVs [70, 71]. Vfgl, a different bacterial lipopro-
tein that iscontribute to the peptidoglycan production 
and degradation and mediates OMV biogenesis in Adher-
ent-invasive E.  coli (AIEC) and E. coli K12 strains [72]. 
These properties are presumably mediated by enhancing 
the synthesis of peptidoglycan or downregulation of lytic 
transglycosylases, leading to the maintenance of turgor 
pressure on the membrane [72, 73]. An increase in the 
number of OMVs produced as blebs to OM relieves the 
cells from the turgor pressure caused by peptidoglycan 
and muramic acid during cell wall synthesis [18].

In a study conducted by Mashburn and Whiteley [74], 
they found that enrichment of OM with phospholipids 
and LPS leads to the production of OMV. Besides, it has 
been shown that membrane curvature transformations 
via the membrane insertion of PQS (2-heptyl-3-hy-
droxy-4-quinolone), a quorum-sensing (QS) molecule, 
cause the formation of OMV in P. aeruginosa [75, 76]. 
Also, sequestration of positively-charged components 
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and destabilization of calcium  (Ca2+) and magnesium 
 (Mg2+) by PQS can enhance the anionic repulsion of 
LPS, resulting in OMV formation [74]. Increased gen-
eration of OMVs has been detected by adding chelating 
agents, such as ethylenediaminetetraacetic acid (EDTA) 
[74, 77]. Also, OM proteins such as TolA/B (Tol-Pal), 
outer membrane protein A (OmpA), YbgF, and LppAB 
(all stabilize OM by increasing protein–protein or pro-
tein-peptidoglycan interplays) participate in the bio-
genesis of OMVs [78]. Some stress factors, such as high 
temperature and antibiotics also promote the produc-
tion of OMVs [17, 79].

Role of outer membrane vesicles in bacteria
The pathogenic role of Gram-negative bacteria OMVs in 
infection has been well documented; nevertheless, the 
advantages of OMVs for non-pathogenic microorgan-
isms are still under investigation [50]. The formation of 
OMVs gives bacteria advantages, although the energy 
cost needed to produce these large macromolecules 
would be high [50]. OMVs mediate the transfer of DNA 
fragments, cytotoxins, autolysins, and virulence factors 
[80–82]. The generation of OMVs helps bacteria commu-
nicate and interact with host cells [18]. OMV, among its 
unique activity in diverse physiological and pathological 

Fig. 1 Biogenesis and cargo of outer membrane vesicles. It has been found that some components impact the OMV biogenesis including (1) 
Peptidoglycan endopeptidases, (2) cross‑links of Meso‑diaminopimelic acid– Meso‑diaminopimelic acid within the peptidoglycan, (3) LPS or 
peptidoglycan fragments, (4) LPS‑associated molecules, (5) insertion of PQS into the outer leaflet of the outer membrane, and (6) envelope 
components. OMV, outer membrane vesicle; LPS, lipopolysaccharide, PQS, Pseudomonas quinolone signal
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functions, has been found to play a pivotal role in acquir-
ing micro-nutrients, stress reactions, and translocation of 
adhesion, toxins, and virulence components to evade the 
host immune reactions [18].

Interestingly, the diversity in peptidoglycan structure 
makes bacteria prone to death by OMVs, and the cyto-
toxicity of OMVs would be outstanding for those bacteria 
possessing the same peptidoglycan structure [18, 83]. The 
neutralization of some bacteria; activity is compromised 
because of the same degradative enzymes in bacteria 
and OMVs, resulting in less susceptibility to degradation 
[18]. The fusion of OMVs to a non-self-strain enhances 
the susceptibility of bacteria to degradative enzyme sys-
tems [84]. The enzyme cargo of OMVs enables bacteria 
to distinguish between self and non-self-cells, resulting 
in the target-specific eradication of non-similar cells [85]. 
For instance, OMVs derived from this system are opera-
tional in a Gram-negative bacterium, Lysobacter sp., that 
generates endopeptidase L5, resulting in degrading other 
competing Gram-negative bacteria [85]. Also, the same 
system for peptidoglycan hydrolase and OMVs contain-
ing peptidoglycan hydrolase produces destruction effects 
after making a clear distinction for non-self-microorgan-
isms [79, 86, 87].

The packaging of enzymes, such as glycosidases and 
proteases, as cargo for bacteria-derived OMVs, shows 
an outstanding activity in acquiring micro-nutrients 
for microbial communities [18]. Myxococcus Xanthus-
derived OMVs carry alkaline phosphatase that influences 
competitive bacteria, resulting in phosphate release that 
enhances the expansion of the multicellular community 
[88, 89]. Phosphoenolpyruvate (2-phosphoenolpyruvate, 
PEP), a catalytic cargo of OMVs carrying enolase, con-
verts plasminogen into plasmin [18]. Also, PEP causes 
colonization of bacteria in the host to the degradation of 
matrix metalloproteins [90].

Additionally, it has been found that the limitation of 
metal ions in bacterial environments leads to competi-
tion between inter- and intra-species bacteria [17]. In 
this regard, loading trace elements on OMVs and serv-
ing them as a reservoir in interspecies competition result 
in the availability of metal ions for easy disposal through 
bacterial utilization [18]. Besides, the mutation in the 
stress-reactive genes enhances the formation of OMVs; 
also, the exposure of bacteria to antibacterial components 
has enormously evolved the production of these mol-
ecules, either by efflux pumps and/or the catalyzing the 
degradability of OMV cargo using the sequestration of 
antibacterial components from the extracellular environ-
ment [18, 91, 92]. It has been shown that the increased 
formation of surface receptors and ATP-binding cassette 
(ABC) transporters in OMVs, which act as sensors for 

micro-nutrients and transporters, can enhance bacterial 
survival [18].

Besides, it has been found that releasing exopolysac-
charides via OMVs enhances the co-accumulation of 
bacterial cells in the biofilm mode of growth [93]. Biofilm 
is a surface adhering community of bacteria in response 
to stress that contains lipids, polysaccharides, proteins, 
nucleic acids, and appendages such as pili, flagella, as well 
as OMVs [5, 93–97]. The conversion from a planktonic 
growth mode into a biofilm mode of growth protects 
bacteria from numerous stress situations, such as starva-
tion, desiccation, and anti-bacterial drugs [98]. In a bio-
film, OMVs give a survival advantage to bacteria because 
it renders drug resistance with the help of biofilms that 
protect the embedded bacterial cells from anti-bacterial 
agents [99]. The connection of OMVs to the P. aeruginosa 
biofilm has intimidated the relation between stress and 
the increase of OMV formation during stress conditions 
[98, 99].

The interplay between bacteria with their host cells 
stimulates the generation of OMVs carrying different car-
gos, such as outer surface protein (Osp) A and OspB in B. 
burgdorferi, and BabA, SabA, and VacA in H. pylori, and 
UspA1 in Moraxella catarrhalis and aminopeptidase in 
P. aeruginosa [79]. GN-derived OMVs act as a bridge to 
enhance the bacterial adhesion to the host tissues and are 
also employed to increase bacterial adherence to the epi-
thelial linings of the intestine and respiratory tract, lead-
ing to failure in bacterial elimination [18].

Role of outer membrane vesicles in host
Despite the unraveled mechanism underlying OMV bio-
genesis, the effect of bacterial OMVs, particularly on host 
cells, is a matter of numerous studies. OMVs can bypass 
the epithelial cell barrier and enter host cells [100]. Sub-
sequently, OMVs will be presented by immune cells, 
such as macrophages (MQ), neutrophils, and dendritic 
cells (DCs) in the submucosa and mediate inflammatory 
reactions against OMVs [48, 100, 101]. Besides, adaptive 
immune cells, including T and B lymphocyte cells, will 
be triggered by signal molecules produced in response to 
antigen-presenting cells [65, 66, 100].

OMVs, in combination with PAMPs, such as porins 
and LPS, induces powerful immune reactions in endothe-
lial cells and stimulate the pattern-recognizing receptors 
(PRRs) on MQ cells [68, 102]. It has been found that 
OMVs mediated by toxins, such as cytolysin A (ClyA), 
leukotoxin, and LPS, are more potent than their solu-
ble forms [16, 103]. For instance, the release of stx1 and 
stx2 of Shigella dysenteriae and Shiga toxin of enterohe-
morrhagic E. coli (EHEC) O157:H7 as cargo for OMVs 
efficiently suppress the process of protein synthesis in 
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the host [104, 105]. GN-OMVs harbor many virulence 
components, including LPS, cystic fibrosis transmem-
brane conductance regulator (CFTR) inhibitory factor 
(Cif ), hemolytic phospholipase C (plcH), and alkaline 
phosphatase, and they remarkably influence the host 
cells [106]. Toxins and virulence factors formation help 
bacterial cells invade the host, hijack host machinery to 
acquire micronutrients, and suppress host immune reac-
tions that are fundamental for survival in the host [18].

Some studies showed that OMVs could cause phe-
notypic alterations in host cells [107, 108] along with 
inflammatory reactions when exposed to the host cells 
[100]. For example, OMVs of Stenotrophomonas malt-
ophili stimulate powerful inflammatory responses in 
A549 cells (lung epithelial cells) [109]. OMVs of V. chol-
erae trigger inflammatory mediators by synthesizing 
active proteases [110].

Additionally, OMVs belonging to P. aeruginosa stimu-
late inflammasome formation via caspase-5 in THP-1 
monocyte cells [111]. It has been shown that OMVs iso-
lated from E. coli incite immune reactions and induce 
the expression of interleukin-8 (IL-8) in intestinal epi-
thelial cells [112, 113]. Nevertheless, such interplays 
would be different between various bacterial OMVs. 
In this regard, OMVs of Acinetobacter baumannii have 
been indicated to possess hemolytic, phospholipase, and 
leucotoxic effects on blood cells [114]. Besides, OMVs 
derived from H. pylori exhibit a crucial activity on the 
degranulation of eosinophil cells [115]. OMVs of Aggre-
gatibacter actinomycetemcomitans can be internalized 
in embryonic kidney cells and induce innate immune 
reactions [116]. OMVs of Porphyromonas gingivalis 
stimulates calcification of vascular smooth muscles via 
Extracellular Signal-regulated Kinase 1 and 2 (ERK1/2)–
Runt-related transcription factor 2 (RUNX2) and induce 
innate immune reactions by endothelial cells [117, 118]. 
OMVs of probiotic E. coli reinforce the epithelial barrier 
via the modulation of tight-junctions (TJ) expression in 
intestinal cells [119]. OMVs are capable of enhancing the 
expression of cell adhesions, as employed by E. coli to 
increase the binding of the bacterium to endothelial cells 
[120]. Finally, OMVs derived from Campylobacter jejuni 
play proteolytic effects on the cleavage of E-cadherin and 
Occludin proteins expressing on intestinal epithelial cells 
[121].

Of note, it has been found that bacteria-derived 
OMVs affect the activity of host immune cells [100]. For 
instance, OMVs can stimulate the production of inflam-
matory cytokines by neutrophils [100]. OMVs isolated 
from Neisseria meningitides can activate neutrophils to 
release pro-inflammatory cytokines and chemokines, 
such as IL-8, interleukin1-β (IL1-β), TNF-alpha (TNF-α), 
macrophage inflammatory protein 1α and 1β (MIP-1α 

and MIP-1β) [122]. Also, it has been found that inter-
feron-gamma (IFN-γ) could alter the level of these 
cytokines to preserve the chronic inflammation situa-
tions [122]. It shows that OMVs could involve in protec-
tive immunity toward infection and these reactions to 
OMVs are similar to those exerted by bacterial infection 
[100]. Additionally, some virulence factors transferred 
by OMVs could oppress the antibacterial activity of neu-
trophils and hence involve in the attenuation of cytokine 
generation [100]. OMVs belonging to Uropathogenic 
E.  coli (UPEC) can transfer cytotoxic necrotizing factor 
type 1 (CNF1), a bacterial toxin, which diminishes the 
membrane fluidity and causes functional impairment in 
neutrophils, resulting in decreased activity of cytokines 
and chemokines [100, 123]. Despite the impact of OMVs 
on neutrophils, recent findings demonstrate that OMVs 
isolated from N. meningitides could be neutralized by 
plasma and bactericidal/permeability-increasing protein 
(BPI), which is an essential protein found in the azuro-
philic granules of neutrophils [124]. It has been found 
that when neutrophils prevent bacterial invasion, in some 
cases, these innate immune cells degrade themselves to 
induce a defense mechanism toward bacteria [100]. Neu-
trophil extracellular trap (NET) is a killing factor that 
enables neutrophil cells to stop bacterial pathogens [125]. 
Most importantly, it has been noted that bacteria-derived 
OMVs can activate the formation of NETs [126]. Never-
theless, in terms of N. meningitides, this pathogen could 
escape NETs, enhancing the OMVs levels and the pro-
gression of infection [126].

Bacteria-derived OMVs could stimulate DCs by co-
stimulatory molecules and cytokine expression [127]. N. 
meningitides-derived OMVs activate DCs by the expres-
sion of accessory molecules (CD40, CD83, CD80, and 
CD86), human leukocyte antigen (HLA)-DR, and pro-
grammed death-ligand 1(PD-L1) [100]. Besides, DCs 
activated by N. meningitides-derived OMVs generate 
cytokines, such as IL-1β and Interleukin 6 (IL-6) [128]. 
OMVs derived from H. pylori activate DCs to produce 
hemeoxygenase-1 (HO-1) through activating protein 
kinase B (PKB) (also known as Akt)- Nuclear factor 
erythroid 2-related factor 2 (Nrf2) and mammalian tar-
get of rapamycin (mTOR)-κB Kinase- Nuclear factor-κB 
(NF-κB) pathways [129]. In summary, the exposure of 
DCs to bacterial OMVs can stimulate innate immune 
reactions toward infection [100].

Macrophages could elicit powerful immune reactions 
when exposed to microbiota-derived OMVs [100]. OMVs 
stimulate macrophages to generate pro-inflammatory 
cytokines [100]. The pretreatment of macrophages with 
OMVs leads to evoked inflammatory responses [80, 
130, 131]. It has been documented that bacterial OMVs 
phagocytosed by macrophages can induce the formation 
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of IL-1β, TNF-α, and IL-8 via the activation of NF-κB 
[132]. Macrophages activated by OMVs derived from P. 
gingivalis produce IL-6, TNFα, Interleukin 10 (IL-10), 
Interleukin-12, p70 (IL-12 p70), IFN-β, and nitric oxide 
(NO) [133]. Also, OMVs of Legionella pneumophila ini-
tiate pro-inflammatory reactions in macrophages via 
toll-like receptor-2 and -4 (TLR2 and TLR4) pathways 
[134]. Meanwhile, OMVs enhance the replication of L. 
pneumophila inside macrophages, and it may character-
ize how OMVs increase the dissemination of L. pneu-
mophila in the host cells [134, 135]. Guanylate-binding 
proteins are found as regulators of inflammation caused 
by OMVs derived from E. coli that could infect bone mar-
row-derived macrophages [136]. In addition, it has been 
shown that macrophages activated by OMVs can cause 
adaptive immune reactions [100]. In this regard, OMVs 
isolated from N. meningitidis and K. pneumoniae trig-
ger the expression of CD80, CD86, major histocompat-
ibility complex-II (MHC-II), HLA-DR, and intercellular 
adhesion molecules-1(ICAM-1) molecules that support 
antigen presentation on the surface of macrophages [80, 
137, 138]. Macrophages, antigen-presenting cells, acti-
vate T lymphocytes to detect antigens of OMVs and 
subsequently enhance adaptive reactions [139]. Notably, 
naive macrophages exposed to OMV of Shigella boydii 
can induce the polarization of CD4+T cells to T helper 
type 1 (Th1) [140]. Several studies show that microbiota-
derived OMVs can change the metabolic remodeling of 
macrophages and stimulate apoptosis and pyroptosis 
[133, 141]. These phenomena can result in diminished 
levels and dysfunction of protective immune cells, which 
can be considered significant in disorder progression.

On the other hand, bacteria-derived OMVs play anti-
inflammatory roles in infected host cells [100]. It has 
been found that macrophages exposed to OMVs can syn-
thesize IL-10 [133, 140]. For example, OMVs belonging 
to H. pylori promote the formation of IL-10, an immu-
nosuppressive cytokine, in peripheral blood mononu-
clear cells (PBMCs) and inhibit apoptosis in Jurkat T 
cells (JTCs) [142]. Therefore, it seems that these vesicles 
are a double-edged sword, as they exert immunostimula-
tory activity against infection and also, at the same time, 
facilitate bacterial production by limiting immune cells to 
attack bacteria.

When bacteria-derived OMVs enter the host cells, 
antigen-presenting cells present their cargo antigen 
toward CD4+T lymphocytes and induce differentia-
tion of T-helper cells toward Th1, Th2, and Th17 cells 
involved in cellular and humoral immune reactions [100]. 
OMVs have powerful adjuvant influences on cross-prim-
ing and contribute to developing CD4+ and CD8+T 
cells [143]. Nevertheless, it has been demonstrated that 
OMVs can inhibit T response and growth [143]. N. 

meningitides-derived OMVs transfer opacity-associated 
protein (Opa) that can influence the proliferation of T 
lymphocytes by changing receptor binding [144]. OMVs 
of H. pylori are reported to suppress the proliferation of 
T lymphocytes by stimulating Cyclooxygenase-2 (COX-
2) in monocyte cells [145]. Besides, transferring of Porin 
B (PorB) by OMVs of Neisseria gonorrhoeae could inhibit 
the proliferation of CD4+T lymphocytes, while PorB 
proteosomes alter immunosuppressive reactions [146].

B-lymphocytes participate in humoral immunity 
through antibody synthesis to defend the host against 
microbial pathogens, and these cells need T lymphocytes 
to react to microbial antigens [100]. OMVs of Salmonella 
Typhimurium stimulate priming of B and T lymphocytes, 
and specific Immunoglobulin G could be recognized in 
in-vivo models immunized with OMVs [80]. It has been 
detected that OMVs can directly activate B lymphocytes 
[147]. In order to characterize OMVs-B cell interaction, 
a novel mechanism can explain the stimulation of B lym-
phocytes by OMVs.

Current applications of microbiota‑derived outer 
membrane vesicles
Microbiota-derived OMVs possess different proper-
ties that make them attractive for various applications, 
such as drug delivery vehicles, microbial vaccines, can-
cer immunotherapy agents, adjuvants, and anti-bacterial 
adhesion components (Fig. 2) (Table 2) [28].

OMV as a drug delivery system
As previously noted, the essential activity of bacterial 
OMVs is to transfer biomolecules to particular targets 
[28]. Accordingly, they could be served as a new drug 
delivery tool because of various advantages, such as tar-
geted delivery without causing toxicity on surround-
ing cells/tissue [28]. Bacteria OMVs can be loaded with 
many ligands using genetically handling their bacterial 
producers. These targeting ligands induce the deposi-
tion of drugs in target sites [28]. Besides, the OMV size 
is another advantage that allows the passively delivery of 
drugs to tumors via EPR [28]. Targeted delivery to spe-
cific cells is another advantage of OMVs in drug delivery. 
OMVs originate from microorganisms and contain vari-
ous PAMPs that target cells to recognize and internalize 
[27] quickly.

The loading of drugs on bacteria-derived OMVs can 
protect these drugs from denaturation and degrada-
tion before reaching the targets [28]. Most importantly, 
in the case of cancer therapy, OMVs stimulate immune 
reactions that can be useful for the better elimination of 
tumors [28]. Nevertheless, if the immune reactions are 
not correctly controlled, they can damage the host. This 
implies why detoxified OMVs with lower inflammatory 
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response capability are warranted. Taken together, the 
administration of microbiota-derived OMVs as a delivery 
tool would be promising for drug delivery systems.

OMVs as bacterial vaccines
Various models of vaccines are applied to protect the host 
from associated microbial infections [28]. As a result of 
possessing the pathogen components, vaccines can stimu-
late long-lasting pathogen-specific immune reactions [28]. 
Of note, microbiota-derived OMVs are currently noted to 
be used for this goal because OMVs contain some PAMPs, 
and also, they could enter the lymph nodes via lymphatic 
drainage after phagocytosis by antigen-presenting cells 
[28, 148]. The detection and uptake of bacteria-derived 
OMVs by antigen-presenting cells enhance their antigen 
presentation, co-stimulatory molecules formation, as well 
as pro-inflammatory cytokines formation [148].

One study showed a potential bacteria-derived OMV-
based vaccine that was derived from N. meningitides. 
This type of OMV could be employed as an adjuvant to 
increase the immune response against meningitis type 
B [28]. OMV-derived vaccines have been used clinically 
for meningitis outbreaks in some countries, such as Nor-
way and Cuba (efficacy up to 70%) [149–153]. This type 
of vaccine contains some antigens, such as PorA [154, 
155]. The PorA protein is a crucial immunogenic factor 
of OMVs derived from N. meningitides and found in vari-
ous strains [153]. Therefore, the immune reaction stim-
ulated by OMV-based vaccines, similar to other types 
of vaccines, is specific to strain. Accordingly, a novel 
multivalent PorA vaccine has been administered from 
bioengineered OMVs containing various PorAs in the 
Netherlands [156, 157]. This OMV-based vaccine stim-
ulated a four-fold enhancement in humoral immunity 

Fig. 2 Biomedical applications of outer‑membrane vesicles. (1) Vaccine, (2) adjuvant, (3) cancer immunotherapy agent, (4) delivery vehicle, and (5) 
inhibiting bacterial adhesion
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in a phase I trial [156, 157]. Other proteins in bacteria-
derived OMVs also induce host reactions [153]. The FDA 
and European Medicines Agency approved the MenB 
vaccine. This vaccine contains OMV ingredients, such 
as minor proteins and PorA, to induce anti-pathogen 
reactions [28, 153]. Bacteria-derived OMV-based based 
vaccines have been extensively studied against bacterial 
pathogens, including S. flexneri, H. pylori, V. cholera, and 
S. Typhimurium [28, 158, 159]. It should be noted that 
these OMVs are generated from their parent bacteria that 
have been found to induce cellular and humoral immune 
reactions [28]. The generation of antibodies such as dif-
ferent Immunoglobulin G (IgG) and Immunoglobulin 
M (IgM) can be specific to pathogenic proteins as well 
as LPS [28]. In summary, different OMV vaccines with 
low toxicity and higher efficiency will be examined and 
entered the clinic.

OMVs as adjuvants
It has been well-documented that immunization with 
classical vaccines containing proteins or other antigens 
stimulates a medium immune reaction, particularly 
for cellular reactions [160]. Hence, currently, adjuvants 
were further evaluated to increase and shape immune 
reactions toward a particular antigen. In this regard, 
adjuvants act via producing depot, enhancing antigen 
presentation and uptake to lymph, and directly stimu-
lating immune responses [161]. Thus, adjuvants can 
diminish the number of antigens and doses to achieve 
therapeutic and prophylactic goals, reducing the cost of 
treatment. Some properties of OMVs include non-rep-
licating ability when isolated from their bacterial origin, 
size of < 300  nm, and containing PAMPs [162]. These 
properties made them an ideal candidate to be utilized 
as adjuvants [48]. The non-replicating ability of OMVs, in 
contrast to their bacterial origin, can solve safety prob-
lems existing in the application of a completed form of 
bacteria. Also, the size of bacteria-derived OMVs facili-
tates their entry into different sites, such as lymph nodes 
via lymphatic drainage and also phagocytosis by antigen-
presenting cells [162]. Also, the pathogen-like property of 
OMVs triggers their uptake by antigen-presenting cells 
[163, 164]. Various types of PAMPs present on OMVs can 
interact with PRRs expressing on antigen-presenting cells 
and induce their full activation, leading to powerful adap-
tive immune reactions [163, 164]. It has been reported 
that lipoproteins and LPS present on the membrane of 
OMVs interplay with TLR2 and TLR4 on the surface of 
antigen-presenting cells, enhancing the uptake and rec-
ognition of OMVs by these cells [165]. RNA and DNA 
cargo of OMVs can interact with TLR3 and TLR9 in 
endosomes, stimulating the proliferation of antigen-pre-
senting cells [165]. The administration of adjuvants can 

stimulate the synergistic formation of cytokines by anti-
gen-presenting cells, resulting in enhanced T lymphocyte 
and antibody formation [166, 167].

It should be noted that vesicular compositions of bac-
teria-derived OMVs facilitate the inclusion of various 
antigens [168]. Hence, the entry of these OMVs into anti-
gen-presenting cells can also mimic these antigens and 
contribute to the presentation and processing of antigens 
[28]. Most importantly, OMVs can be engineered to pro-
duce antigens by genetic manipulation of their bacterial 
origin [28]. A novel OMV-based vaccine was recently 
designed by loading Poly-β-1,6-N-acetyl-D-glucosamine 
(PNAG), an immunogen generated by bacterial patho-
gens, on OMVs to cause a robust immune response 
against PNAG- bacteria [169]. It has been indicated that 
the treatment of mice with OMVs protected them against 
the lethal effect of various PNAG-forming bacteria [28]. 
Taken together, the potential of microbiota-derived 
OMVs as an adjuvant in developing novel vaccines would 
be of note.

OMVs as cancer immunotherapy agents
The use of bacteria-derived OMVs for human cancer 
therapy is currently performed in multiple clinical trials 
[28]. The application of OMVs was relatively safer than 
live bacterial cells, as they are non-replicating particles 
[28]. OMVs contain different immunostimulatory com-
ponents that help detect and uptake bacteria-derived 
OMVs and lead to the activation of immune reactions 
[28]. Due to the size of OMVs, they can enter or bind 
to tumor sites and stimulate local immunity via EPR 
effects [28]. In a study conducted by Kim et al. [170], they 
exhibited the remarkable anti-tumor activity of OMVs. 
They found that following the intravenous injection of 
OMVs are stored in tumor sites and stimulate anti-tumor 
immune reactions to eliminate tumors [170]. It has been 
shown that some OMV-derived bacteria can suppress 
tumor growth, and benefit cancer therapy [170]. Inter-
estingly, the anti-tumor immune response stimulated 
by OMVs causes immunological memory in mice [170]. 
Notably, this anti-tumor influences the function of IFN-
γ- and trypsin-sensitive proteins and has a crucial role in 
the formation of IFN-γ [170].

Bacteria-derived OMVs induce effective anti-tumor 
activity that can completely eliminate tumor sites and 
suppress tumor metastasis and recurrence [28]. Accord-
ingly, a study by Chen et  al. found that co-administra-
tion of bacteria-derived OMVs and chemotherapeutic 
drugs led to a better anti-tumor response. They loaded 
polyethylene glycol and the Arg-Gly-Asp peptide, a 
tumor-targeting ligand, on OMVs to enhance their blood 
circulation and enhance tumor-targeting properties 
[171]. In the next step, they coated OMVs with Tegafur, 
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which made cancer cells sensitive to T lymphocytes and 
diminished the immunosuppressive cells such as mye-
loid-derived suppressor cells. These OMV-coated nano-
particles provided an anti-tumor activity that resulted in 
stimulating the host immune cells. The systemic injection 
of these OVMs increased the accumulation of particles 
in tumors via the EPR effect and active targeting through 
the Arg-Gly-Asp peptide [171].

OMVs as diagnostic and therapeutic biomarker
A key function of bio-imaging methods is to aid in the 
early detection and management of diseases. OMVs can 
have exogenous bio-imaging probes created and fixed 
onto them to deliver a visual signal by optical, magnetic, 
or nuclear means [172]. Due to this property, research 
into the processes by which OMVs mediate bacterial-
host communication can be conducted. According to this 
principle, OMVs could be detected in body fluids, and 
their molecular compositions reflect their origin; hence, 
OMVs can be considered novel prognostic and diagnos-
tic biomarkers for many infectious diseases. OMVs pos-
sess some distinct advantages, such as the ability to act 
as noninvasive biomarkers generated by almost all patho-
gens, reflect the progress of the infection, show treatment 
response, protect their cargos during long-term storage, 
as well as the biodegradability in all body fluids [173].

DiR iodide, a lipophilic fluorescent dye, labels mem-
branes. By identifying OMVs with DiR, Liu et  al. [174] 
showed that Akkermansia muciniphila OMVs can infil-
trate and aggregate in bone tissues to enhance osteogenic 
activity and prevent osteoclast formation. Non-cova-
lently bound lipophilic fluorescent dyes are unstable and 
lose fluorescence quickly.

As previously mentioned, OMVs carry various bacte-
rial components such as LPS, proteins, DNA, and RNA 
[48, 175]. Ghosal et  al. [176] evaluated the extracellular 
component of E. coli and found that OMVs derived from 
the E. coli MG1655 strain contain small non-coding 
RNAs. Besides, Sjöström et al. [177] revealed that OMVs 
belonging to V. cholerae contain sRNAs. Also, Resch et al. 
[178] reported non-coding RNAs enriched in OMVs 
belonging to group A Streptococcus. Koeppen et al. [54] 
revealed an inter-kingdom regulation by sRNAs through 
bacterial OMVs in which sRNA52320 from OMV of P. 
aeruginosa could be transferred into epithelial cells in the 
lung and diminish the immune reactions induced by LPS 
via targeting IL-8 mRNA. These findings have promis-
ingly noted secretory sRNAs’ pathological and biological 
significance in OMVs.

Moreover, optoacoustic imaging can be done using 
bacterial vesicles. Melanin’s extensive optical absorp-
tion makes it excellent for optoacoustic imaging[179]. 
Melanin can be spontaneously packed into OMVs by 

overexpressing tyrosinase in E. coli, a crucial enzyme in 
melanin formation. OMVs create an improved multi-
spectral optoacoustic tomography signal and induce local 
warmth when irradiated [180]. Engineered OMVs can 
aggregate in mouse tumor tissue for imaging and photo-
thermal treatment after systemic delivery. Polydopamine 
nanoparticles produced by oxidative polymerization 
of dopamine are melanin-like and can be incorporated 
into the OMV–cancer cell hybrid membrane for tumor-
targeted photoacoustic imaging and photothermal treat-
ment [9].

Several studies showed that Gram-negative periodon-
tal pathogens, including Treponema denticola, Tan-
nerella forsythia, P. gingivalis, Fusobacterium nucleatum, 
Campylobacter rectus, Prevotella intermedia, Eikenella 
corrodens, and Peptostreptococcus anaerobius that are 
mediated periodontal attachment and disorder progres-
sion can generate OMVs [181, 182]. It has been dem-
onstrated that OMVs of P. gingivalis trigger bacterial 
co-aggregation and impact the bacterial structure in peri-
odontal plaque via sub-gingival biofilm formation.[181, 
182]. Hence, characterization and detection of saliva-
specific bacteria-derived OMVs are crucial to many defi-
nitions of the microbiome–host interplays in periodontal 
disorders. Accordingly, Han et  al. [182] evaluated the 
specific periodontal pathogen-derived OMVs in salivary 
from periodontitis patients. They found that 5mC hyper-
methylation in salivary OMVs could distinguish peri-
odontitis individuals from healthy individuals [182]. This 
result shows that OMV methylation can be a promising 
biomarker for human periodontitis.

By interacting with intestinal epithelia and the mucosal 
immune system, commensal OMVs maintain intestinal 
homeostasis. B. fragilis OMVs prevent intestinal inflam-
mation and colitis in mice [183]. Bacteroides thetaio-
taomicron OMVs induce IL-10 expression in healthy 
colonic DCs but not in IBD patients [184]. B. thetaio-
taomicron-derived OMVs modulate immunological 
responses, making them potential IBD therapies. OMVs 
can be combined with innate immunogenicity to improve 
immunotherapy effectiveness. OMVs can penetrate 
through the stratum corneum, making them suitable for 
melanoma treatment. Peng and Wang [185] developed 
E. coli producing TNF-related apoptosis inducing ligand 
(TRAIL) protein and modified OMVs with v3 integ-
rin peptide, targeting ligand, and indocyanine green for 
melanoma treatment. Multifunctional OMVs can boost 
antitumor performance in cutaneous melanoma with 
transdermal photo-TRAIL therapy.

OMVs and their promising application as biomark-
ers are useful candidates for therapeutic approaches. 
Despite the challenges in the clinical administration of 
OMVs, their physiological and biological characteristics 
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have great power as diagnostic and therapeutic tools. In 
summary, further research can help introduce potential 
biomarkers and facilitate the clinical application of bacte-
ria-derived OMVs.

Limitation of OMV application
Currently, considerable investigations have been carried 
out to evaluate the role of OMVs in bacterial commu-
nication and infection development [186, 187]. Besides, 
many groups have examined OMVs for their potential 
as delivery vehicles, bacterial vaccines, adjuvants cancer 
immunotherapy agents [22, 28, 188–190]. Nevertheless, 
there are some limitations, such as a lack of inadequate 
terminology, standardized methodology for the purifica-
tion and/or isolation of different OMVs, and technical 
challenges in quantification and characterization [34, 
191].

The difficult separation and purification processes nec-
essary to get significant amounts of these microscopic 
vesicular structures are one of the primary challenges of 
investigating OMVs. The majority of investigations iden-
tify ultracentrifugation and ultrafiltration as techniques 
[192]. Notably, the isolation process can impact the shape 
and yield of OMVs, increase OMV aggregation, and/
or collect lipoproteins and other undesirable cell debris. 
Therefore, the optimal OMV separation approach should 
deliver high OMV yields without compromising vesicles 
for further experimental investigations or biotechnology 
applications.

The generation of next-generation vaccinations has 
a lot of potential with OMV-based vaccines. There are 
still a lot of difficulties, including yields of OMVs after 
isolation and the composition, which affects immuno-
genicity and toxicity. OMVs are naturally advantageous 
to the bacterium, but they are not created in significant 
amounts during bacterial growth. However, there can be 
a very easy way to improve OMV yields [191]. Accord-
ing to research, OMV release rises in response to stress. 
Environmental stress, such as pressure, temperature, or 
nutrient depletion stress, is the least serious type of stress 
that bacteria can endure.

Along with the toxicity of wild-type LPS, bacteria-
derived OMVs with several TLR antagonists occurring 
in OMVs such as lipoproteins, flagellin, and other OMPs 
can cause uncontrolled reactions such as excess inflam-
mation [27]. Hence, OMV endotoxin components must 
be eliminated after isolation; for example, in Neisse-
ria, the Factor H binding protein must be isolated from 
OMPs due to its cytotoxic nature [27]. Another challenge 
is that LPS-deficient OMVs usually show less immuno-
genicity than wild-type bacteria-derived OMVs. Hence, 
an optimal balance in the effective changes in LPS, such 
as low toxicity and high immunogenicity, is warranted.

Most importantly, if microbiota-derived OMVs are 
commercialized for the abovementioned applications, 
mass production should be considered [193, 194]. The 
mechanism underlying the production of OMVs is not 
fully understood, and hence consistent formation may 
be complex [193]. In this regard, during the Upstream 
Process of pre-culture of bacteria, another antifoam was 
needed for many scales up in the fermentation process. 
In contrast, a significant number of antifoams are not 
compatible with the generation processes of OMVs. Their 
surfactants may influence OMV function or even inter-
fere with the integrity and purification of OMV [195, 
196]. However, the use of antifoam is still considered a 
standard approach to inhibit excessive foaming due to 
required aeration at different densities [193]. Alterna-
tive approaches for mechanical foam breaking have been 
evaluated as part of the scale-up during the fermentation 
process [27].

Additionally, external components such as temperature 
and in rare cases, the absorption of phages, also influence 
OMV generation. Also, oxidative stress due to cysteine 
depletion in N. meningitides and/or sodium carbonate in 
V. cholera can affect the yield volume of the recombinant 
OMVs [27]. Hence, it is required to enhance mediated 
production technology and environmental situations.

The poor yield of OMVs, which are released sponta-
neously by bacteria but in very small numbers, together 
with the possibility of low levels of important protective 
antigens on their surface, are further barriers to their use 
as vaccines [197]. OMVs also contain endotoxins and 
deoxycholate extraction followed by differential centrifu-
gation from the homogenized bacterial bulk can increase 
yield and decrease endotoxin levels; these are typically 
referred to as OMVs made using this technique deter-
gent-extracted OMVs.

Lastly, several studies noted that LPS derivatives have 
a similar impact when compared with WT-LPS in  vivo. 
These species-specific reactions can cause differences 
in the signaling and induction of TLRs [198]. Thus, this 
reaction highlighted the difficulty of in  vivo analysis 
of the safety of microbiota-derived OMVs in humans. 
Hence, to improve the challenge of OMV applications, 
many human trials are needed to examine their biological 
effects.

Concluding remarks and future perspective
All in all, the current evidence implies that the gut micro-
biota and its metabolites have a crucial role in human 
health and disease. The disruption of the gut microbiota 
(which is called dysbiosis) balance can disturb the host’s 
energy metabolism and immunity, significantly impact-
ing the development of numerous human disorders. 
Recent investigations propose that OMVs could perform 



Page 16 of 21Jalalifar et al. Infectious Agents and Cancer  2023, 18(1):3

a critical role in shaping immune responses, including 
homeostasis and acute inflammatory responses. Fol-
lowing dysbiosis of the gut microbiota during infection, 
the number and type of these OMVs may change so that 
these molecules can be employed as targets for diagnosis. 
Also, we can apply OMVs as antibacterial agents. In this 
review, the application of OMVs for medical purposes, 
such as cancer immunotherapy, OVM-based vaccines, 
and drug delivery, were broadly addressed.

It should be noted that several obstacles exist in the 
application of these molecules, such as low yield volume 
and toxic effects owing to possessing some cytotoxic 
components (e.g., LPS). In this regard, some approaches 
have been proposed, such as genetic manipulation to 
reduce endotoxicity. One solution that seems to be opti-
mal for increasing yields of OMVs would be heat induc-
tion [191]. In conclusion, future studies should focus on 
using OMVs and solving these challenges to pave the way 
for applying these molecules in the clinic.
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