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Abstract

Primary hepatocellular carcinoma (HCC) mainly develops in subjects chronically infected with hepatitis B (HBV) and C
(HCV) viruses through a multistep process characterized by the accumulation of genetic alterations in the human
genome. Nucleotide changes in coding regions (i.e. TP53, CTNNB1, ARID1A and ARID2) as well as in non-coding regions
(i.e. TERT promoter) are considered cancer drivers for HCC development with variable frequencies in different geographic
regions depending on the etiology and environmental factors. Recurrent hot spot mutations in TERT promoter (G > A
at-124 bp; G > A at −146 bp), have shown to be common events in many tumor types including HCC and to up regulate
the expression of telomerases. We performed a comprehensive review of the literature evaluating the differential
distribution of TERT promoter mutations in 1939 primary HCC from four continents. Mutation rates were found higher in
Europe (56.6%) and Africa (53.3%) than America (40%) and Asia (42.5%). In addition, HCV-related HCC were more
frequently mutated (44.8% in US and 69.7% in Asia) than HBV-related HCC (21.4% in US and 45.5% in Africa). HCC cases
associated to factors other than hepatitis viruses are also frequently mutated in TERT promoter (43.6%, 52.6% and 57.7% in
USA, Asia and Europe, respectively). These results support a major role for telomere elongation in HCV-related and non-
viral related hepatic carcinogenesis and suggest that TERT promoter mutations could represent a candidate biomarker for
the early detection of liver cancer in subjects with HCV infection or with metabolic liver diseases.
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Background
Primary liver cancer is one of the commonest and dead-
liest malignancies in the world accounting for 782,000
new cases and 746,000 deaths in 2012 [1]. The highest
incidence has been observed in men from Eastern and
South-Eastern Asia (age standardized rates [ASR] 31.9
and 22.2 per 100,000, respectively) and in women from
Eastern Asia and Western Africa (ASR 8.1 and 10.2 per
100,000, respectively). On the other hand, liver cancer
incidence is intermediate in southern Europe and
northern America (ASR 9.5 and 9.3/100,000 men, re-
spectively), and low in western and northern Europe
(ASR <7.5/100,000 men and <2.5/100,000 women) [2].
Hepatocellular carcinoma (HCC) and intrahepathic

cholangiocarcinoma (ICC) are the most common histo-
types of primary liver cancer accounting for about 80%

and 15%, respectively, of all cases worldwide [3–5]. HCC
and ICC mainly develops in patients with liver cirrhosis
caused by chronic infection with hepatitis B (HBV) and
hepatitis C (HCV) or caused by alcohol excess, as well
as in patients with non-alcoholic fatty liver disease or
other metabolic liver disorders [6]. HBV chronically in-
fects more than 300 million people in the world, mainly
in Asia and Africa, while HCV infects approximately
180 million people, mostly in Japan, Europe and United
States [6]. Accordingly, HBV-related HCC are more fre-
quent in Asia and Africa (above 50% of all cases), while
HCV-related HCC are predominant in Europe and USA
(35-50% of all cases) [2, 7, 8].
The complex multistep process of liver carcinogenesis in-

cludes inflammation, hepatic damage, cirrhosis, increased
liver fibrosis and HCC [9–11]. The molecular mechanisms
involved in the malignant transformation of hepatocytes
are extremely complex and comprise numerous genetic
and epigenetic alterations [12, 13]. Genome instability,
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mainly involving gains in chromosomes 1q, 5, 6p, 7, 8q,
17q and 20 and losses in chromosomes 1p, 4q, 6q, 8p, 13q,
16, 17p and 21, has been observed in more than 80% of
HCC associated to chronic viral hepatitis [14–17].
Several lines of evidence suggest that the pattern of

somatic mutations in liver cancer varies in different geo-
graphic regions very likely depending on environmental
factors or host genetic diversity [18–21]. Indeed, tumor
protein 53 (TP53) coding gene mutations in HCC have
been observed to occur most commonly in sub-Saharan
Africa and Southeast Asia, where the combination of
dietary aflatoxin B1 (AFB1) exposure and hepatitis B in-
fection promotes high rate of mutagenesis in the liver
[22]. More recently, several new recurrent mutations
affecting genes involved in cell cycle regulation and
chromatin remodeling have been discovered by whole
exome sequencing technology and found differentially
distributed in different populations [23–26].
Moreover, the analysis by whole-genome sequencing

allowed to discover a substantial fraction of recurrent
somatic mutations in non-coding regions of human gen-
ome with important regulatory effects on the gene expres-
sion in cancer [27]. The most notable example has been
the identification of hot spot activating mutations in the
promoter region of telomerase reverse transcriptase
(TERT) gene in about 85% of human tumors, including
liver cancer [28–31]. The newly described mutations at
nucleotides 124 (mostly G >A and rarely G > T) or 146
(G > A) before the ATG start site in TERT promoter re-
gion have been recognized as frequent and early alter-
ations in the hepatic carcinogenesis [31, 32]. These
mutations create a binding site for transcription factors
ETS (E-twenty six) and ternary complex factor (TCF),
causing TERT over expression and restoring the telomer-
ase activity [33].
Moreover, the single nucleotide polymorphism

rs2853669, located at −245 bp upstream of the ATG start
codon in TERT promoter, has also shown to deregulate the
expression levels of TERT mRNA [34].
We performed a systematic review of published studies

to investigate the frequency of TERT promoter mutations
in 1939 HCC with diverse etiologies. Moreover, we evalu-
ated the mutational pattern of TERT promoter in tumors
from different geographic areas to possibly correlate the
type of nucleotide changes with specific environmental or
genetic factors in different regions of the world.

Telomerase and liver diseases
TERT gene encodes for the catalytic subunit of the telomer-
ase reverse transcriptase which is an RNA-dependent DNA
polymerase highly expressed in germ cells, in stem cells and
in cancer cells [35, 36]. The telomerase synthesizes telo-
meres which are long stretches of 5’-TTAGGG-3’ DNA re-
peats ending in a single-strand 3’ G-rich sequence located

at the extremities of human chromosomes. Telomeres pro-
tect chromosomes from degradation, end-to-end fusion and
recombination and act as an internal clock by regulating the
maximal number of cell replication and aging [37–43].
The pathogenesis of liver diseases is strongly dependent

on telomeres length and telomerase expression [44]. Several
studies have shown a relationship between cirrhosis and
telomeres attrition suggesting that this event could be con-
sidered a marker of cirrhosis [45–47]. However, telomerase
activity and telomere elongation is restored in up to 90% of
HCC, compared to the 21% of adjacent non-tumor tissues
[8, 48–50]. Moreover, long telomeres and increased tel-
omerase levels have shown to be associated with aggressive
HCC phenotype and with poor prognosis [51].
Telomerase is activated by different mechanisms during

liver carcinogenesis. In HBV related HCC the telomerase
reactivation is frequently caused by the insertion of the
HBV DNA within or upstream the TERT gene [52–56].
Sung et al. identified integrated HBV DNA in 86.4% of liver
cancers, by whole-genome deep sequencing, and found that
genes recurrently affected by HBV integration were TERT
(23.7%), myeloid/lymphoid or mixed-lineage leukemia 4
(MLL4) gene (11.8%) and cyclin E1 encoding gene
(CCNE1) (5.2%) [57]. Totoki et al. performed a comprehen-
sive transancestry liver cancer genome study on 506 HCC
cases from Asia and USA and observed HBV integration in
TERT locus in 22% of tumors [31]. Moreover, they ob-
served that TERT promoter mutations were in general mu-
tually exclusive with HBV genome integration in the TERT
locus and with TERT focal amplification, suggesting that ei-
ther event is sufficient to activate telomerases. In addition,
Zhao et al. reported that HBV insertional sites are signifi-
cantly enriched in the proximity of telomeres in HCC DNA
but not in non-tumor cell genomes suggesting that the in-
tegrated virus in cancer tends to target chromosomal ele-
ments critical for the maintenance of chromosome stability
[58]. Moreover, Yang et al. analyzed 2199 HBV integration
sites and observed that affected genes included 23.1% of
protein-coding genes and 24.7% of long noncoding RNAs
(lncRNA) [59]. Interestingly, the most frequently lncRNA
genes affected by HBV integration were related to telomere
maintenance, protein modification processes, and chromo-
some localization [59].
In HCV-related HCC and non-viral related HCC the tel-

omerase activation is due to TERT promoter mutations in
40% to 75% of HCC cases, however with a considerable
variation in different cohorts, as detailed in the next section.

TERT promoter mutations in different geographical
regions
Published data on the analysis of TERT promoter muta-
tions in liver cancer were searched in Medline using the
terms (“hepatocellular” OR (“Liver” AND “Cancer”))
AND (“TERT” OR “telomerase”) AND (“Promoter”)
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AND (“mutation” OR “variation”), (Fig. 1). For the stud-
ies that involved more than one geographic location the
data were divided into components for each continent.
The search was updated on 31 January 2017.
The frequencies of TERT mutations in HCC have

shown to vary by cancer etiology and geographic patient
provenance (Table 1). Cevik et al. analyzed TERT pro-
moter mutations in 15 HCC cases from Africa [60].
African patients comprised mainly HBV-positive subjects
from Mozambique (n = 6), Transkei (n = 4), Lesotho (n =
2), Swaziland (n = 1) and South Africa (n = 2). The overall
frequency of TERT promoter mutation among the HCC
African cases was 53.3% and in the subgroup of HBV-
related HCC was 45.5%. No other study has analyzed the
TERT promoter mutation pattern in African HCC and
more cases need to be analyzed to confirm such results.
Two studies evaluated TERT promoter mutations among

150 HCC cases from the United States and the overall mu-
tation rate was 40% [31, 61]. The HCV-related HCC and
non viral related cases, mainly associated to alcohol and
metabolic syndrome, were more mutated (44.7% and
43.6%, respectively) compared to HBV-related cases
(21.4%), Table 1. Both USA cohorts comprised patients with
European ancestry (n = 74), Asian ancestry (n = 22) and
African-American ancestry (n = 23). Comparable frequen-
cies of TERT promoter mutations were observed between
European (43.6%) and African (37.5%) HCV-related HCC.
Larger studies are warranted in the USA to analyze the
TERT variation frequencies in HBV-related and no-virus

related HCC and to determine whether the genetic back-
ground has a role in the accumulation of TERT mutations
in HCC in this multiethnic population.
In Asia, a total of 1014 HCC have been analyzed for

TERT promoter nucleotide changes comprising 396 cases
from Japan, 318 from China, 195 from Taiwan and 105
from South Korea. The overall mutation frequencies in
TERT promoter were 28.9% in HBV-positive, 69.7% in
HCV-related and 52.6% in non viral related HCC (Table 1).
However, there were significant differences between muta-
tion rates observed in HCV-related and no virus related
HCC in Japan (74.8% and 62.4%, respectively) and South
Korea (83.3% and 61.9%) versus Taiwan (54% and 20.8%).
Similarly, variable rates of TERT mutations were observed
among HBV positive HCC with high frequency in Japan
(37.4%), intermediate in China (30.1%) and South Korea
(29.4%) and low in Taiwan (20.6%).
In Europe, among the 760 HCC analyzed in five stud-

ies a total of 430 (56.6%) cases were found mutated in
TERT promoter. The proportion of hot spot mutations
in HCV, no virus and HBV related HCC was 61.5%,
57.7% and 42.7%, respectively. The highest mutation rate
was observed in HCV-positive (73.1%) and other eti-
ology HCC (61.7%), mainly related to alcohol, in France.
In Italy, lower rates of TERT promoter mutations were
observed in HCV-positive HCC, ranging from 40% to
53.6%, and in HBV-positive HCC, ranging from 70% to
41.6%, from northern and southern Italy patients,
respectively.

Fig. 1 Flow diagram of selected articles and inclusion in the meta analysis
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In all studies the activating mutation at nucleotide
−124 G > A was more frequent than the mutation at
position −146 G > A (93.4% versus 4.6%, respectively).

TERT promoter mutation and rs2853669 polymorphism
Several studies have reported that the single nucleotide
polymorphism (SNP) rs2853669 allele G, located at nu-
cleotide −245 from the TERT ATG start site, down regu-
lates the expression of TERT gene caused by hot spot
promoter mutations in several types of cancer including
bladder, gliomas, and renal cell cancer [62, 63]. In the gen-
eral population the rs2853669 allele G is less frequent
than allele A, except for the south Asia population where
it has been observed the reverse [64] (www.ncbi.nlm.nih.-
gov/projects/SNP/snp_ref.cgi?rs=2853669).
Only two studies evaluated the rs2853669 polymorph-

ism and TERT promoter mutations in liver cancer. The
study by Pezzuto et al., analyzed the allele frequency of
TERT SNP rs2853669 in HCC from Southern Italy pa-
tients and showed allele frequencies of 51% A and
48.9% G among the TERT promoter mutated HCC and
57.6% A and 42.4% G among non-mutated cancer cases
[32]. Although G allele appeared more frequent among
TERT mutated cases, such difference did not reach stat-
istical significance. Moreover, the Log-rank survival ana-
lysis showed no correlation between the presence of
TERT promoter mutations, alone or in combination
with rs2853669 GG and GA genotypes, and poor prog-
nosis (p = 0.368) [32].
Ko et al. analyzed the impact of rs2853669 polymorph-

ism in a cohort of south Korean HCC patients and

observed no effect on the overall and recurrence-free sur-
vival. However, the combination of rs2853669 G allele and
mutation in the TERT promoter was associated with poor
survival [65]. Moreover, they showed that the rs2853669
nucleotide G causes increased binding of the transcription
factor ETS2 to the TERT promoter and lower activity of
the transcription inhibitor E2F1. This condition favors
TERT promoter methylation and increased expression of
telomerases [65]. Methylation of TERT promoter has been
observed in several tumors and transformed cell lines and
has been reported to correlate with TERT over expression
and poor survival [66, 67].

Discussion
Telomerase activity has been found strongly up regulated
in many human cancers including HCC, highlighting its
pivotal role in the neoplastic process [28, 48, 49, 68].
TERT promoter mutations have been recognized as the
earliest and most frequent genetic alterations in liver can-
cer [25, 31, 69]. We have summarized the TERT promoter
mutation distribution in HCC cases, associated to differ-
ent etiologies, from various geographic regions.
In Africa, where HCC cases are mainly related to HBV

infection and AFB1 dietary exposure, the frequency of
TERT promoter mutations is around 53%. It is not
known if there is synergistic effect between AFB1 and
HBV on the accumulation of mutations in TERT as ob-
served for the G to T variation at codon 249 in TP53
gene, specifically caused by HBV and AFB1 [70–72].
Interestingly, in USA where patients have no AFB1 ex-
posure, the frequency of TERT promoter mutations

Fig. 2 Frequency of TERT promoter mutations in all HCC from different geographic regions stratified by HBV (% HBV TERTp mut), as percentage
of HBV+ HCC cases characterized by TERT promoter mutations, and HCV (% HCV TERTp mut), as percentage of HCV+ HCC cases characterized by
TERT promoter mutations. Patients with both HBV and HCV infections have been included in the HBV group. HCC cases of various etiologies
including alcohol intake, metabolic syndrome, NAFLD, NASH, hemochromatosis and cases with unknown etiology have been grouped in Other
etiologies (% Other etiol. TERTp mut)
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among HBV-positive cases is 21.4% [31, 61]. In Asia, the
overall rate is 42.5% with lower frequencies in China and
Taiwan [31, 60, 73–77]. Higher frequencies of TERT
promoter mutations, ranging from 42.8% to 66.6%, have
been observed in Europe [30, 32, 60, 69, 78].
As shown in Fig. 2, HCV positive HCC have in general

higher TERT promoter mutations rates than HBV positive
tumors, in which TERT over expression is frequently
caused by HBV integration [31, 32, 60, 73, 74]. HCC caused
by non viral factors, such as alcohol consumption, meta-
bolic syndrome, nonalcoholic fatty liver disease (NAFLD),
nonalcoholic steatohepatitis (NASH), hemochromatosis,
have a striking high frequency of mutation in TERT pro-
moter. In fact, Ki et al. showed that in Japan 81.8% of
NAFLD related HCC were mutated in TERT promoter
[77]. In Europe, Nault et al. reported TERT promoter mu-
tations in 68% of alcohol related HCC and in 63% of
hemochromatosis related HCC cases [69].
Interestingly, TERT promoter mutations were more

frequent in older patients [69, 73], and often associated
with activating mutations in catenin beta 1 coding gene
(CTNNB1) suggesting a cooperation between telomerase
activity and β-catenin pathway [69].

Conclusions
In conclusion, TERT promoter mutations are very frequent
in HCC with different etiologies and are tumor specific
given their constant absence in non-tumor tissues. There is
a substantial heterogeneity in the mutation frequency in
HCC from different geographic regions, probably due to en-
vironmental factors, such as AFB1, and lifestyle, such as
habit of alcohol consumption. The high proportion of HCC
mutated cases in different geographic regions and the earli-
ness of occurrence of TERT mutations during hepatocarci-
nogenesis suggest the use of this reliable biomarker for early
HCC diagnosis and as possible target for specific therapies.
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